Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Greenstone belts as ancient marginal basins or ensialic rift zones

Abstract

EVIDENCE accumulated in several Archaean granitoid–greenstone belts indicates that greenstones were formed on, or adjacent to, pre-existing sialic crust that now consists of granitoid gneisses disrupted by younger granitoids1–10. Structural studies reported here of the Eastern Goldfields Province, Yilgarn Block, Western Australia suggest a similar evolution for greenstone belts11–13. We discuss the two main models which can explain the evolution of such greenstone belts. The first involves development of greenstones within ensialic rift zones3,14–16, and may not have a modern analogue, whereas the second involves their development in a marginal basin environment17,19 similar to that developed behind modern arc systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, N. W. & Stidolph, P. A. Trans, geol. Soc. S.Afr. Sp. Publ. 2, 305–333 (1969).

    CAS  Google Scholar 

  2. Hunter, D. R. Trans. geol. Soc. S.Afr. 73, 107–150 (1970).

    Google Scholar 

  3. Hunter, D. R. Precambr. Res. 1, 259–294 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Stowe, C. W. Geol. Soc. Austr. Sp. Publ. 3, 377–383 (1971).

    Google Scholar 

  5. Stowe, C. W. J. geol. Soc. Lond. 130, 411–426 (1974).

    Article  ADS  Google Scholar 

  6. Bickle, M. J., Martin, A. & Nisbet, E. G. Earth planet. Sci. Lett. 27, 155–162 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Hawksworth, C. J., Moorbath, S. & O'Nions, R. K. Earth planet. Sci. Lett. 25, 251–262 (1975).

    Article  ADS  Google Scholar 

  8. Coward, M. P., Linken, B. C. & Wright, C. I. in The Early History of the Earth (ed. Windley, B. F.) 323–330 (Wiley, New York, 1976).

    Google Scholar 

  9. Shackleton, R. M. in The Early History of the Earth (ed. Windley, B. F.) 317–321 (Wiley, New York, 1976).

    Google Scholar 

  10. Barton, J. M., Fripp, R. E. P. & Ryan, B. Nature 267, 487–490 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Binns, R. A., Gunthorpe, R. G. & Groves, D. I. in The Early History of the Earth (ed. Windley, B. F.) 303–313 (Wiley, New York, 1976).

    Google Scholar 

  12. Archibald, N. J. & Bettenay, L. F. Earth planet. Sci. Lett. 33, 370–378 (1977).

    Article  ADS  Google Scholar 

  13. Archibald, N. J., Bettenay, L. F., Binns, R. A., Groves, D. I. & Gunthorpe, R. J. Precambr. Res. 6, 103–131 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Windley, B. F. Phil. Trans. R. Soc. Lond. A273, 321–341 (1973).

    Article  ADS  Google Scholar 

  15. Condie, K. C. & Hunter, D. R. Earth planet. Sci. Lett. 29, 389–400 (1976).

    Article  ADS  CAS  Google Scholar 

  16. Nesbitt, R. W. & Sun, S. S. Earth planet. Sci. Lett. 31, 433–453 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Tarney, J., Dalziel, I. W. D. & de Wit, M. J. in The Early History of the Earth (ed. Windley, B. F.) 131–146 (Wiley, New York, 1976).

    Google Scholar 

  18. Burke, D., Dewey, F. F. & Kidd, W. S. F. in The Early History of the Earth (ed. Windley, B. F.) 113–129 (Wiley, New York, 1976).

    Google Scholar 

  19. Condie, K. C. & Harrison, N. M. Precambr. Res. 3, 253–271 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Windley, B. F. The Evolving Continents 24–64 (Wiley, New York, 1977).

    Google Scholar 

  21. Dalziel, I. W. D., de Wit, M. J. & Palmer, K. F. Nature 250, 291–294 (1974).

    Article  ADS  Google Scholar 

  22. Turek, A. thesis, Australian National Univ. (1966).

  23. Arriens, P. A. Geol. Soc. Austr. Sp. Publ. 3, 11–24 (1971).

    Google Scholar 

  24. Turek, A. & Compston, W. Geol. Soc. Austr. Sp. Publ. 3, 72 (1971).

    Google Scholar 

  25. Oversby, V. M. Geochim. cosmochim. Acta 39, 1107–1125 (1975).

    Article  ADS  CAS  Google Scholar 

  26. Roddick, J. C., Compston, W. & Durney, D. W. Precambr. Res. 3, 55–78 (1976).

    Article  ADS  CAS  Google Scholar 

  27. Hallberg, J. A., Johnston, C. & Bye, S. M. Precambr. Res. 3, 111–136 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Cobbing, E. J. & Pitcher, W. S. J. geol. Soc. Lond. 128, 421–460 (1972).

    Article  Google Scholar 

  29. Coleman, P. J. Earth Sci. Rev. 11, 47–80 (1975).

    Article  ADS  Google Scholar 

  30. Glikson, A. Y. & Lambert, I. B. Tectonophysics 30, 55–89 (1976).

    Article  ADS  CAS  Google Scholar 

  31. Williams, I. R. Geol. Surv. Western Australia A. Rep. 1973 53–59 (1974).

  32. Ramsay, J. G. Trans. geol. Soc. S.Afr. 66, 353–398 (1963).

    Google Scholar 

  33. Coward, M. P. & James, P. R. Precambr. Res. 1, 235–258 (1974).

    Article  ADS  CAS  Google Scholar 

  34. Sun, S. S. & Hanson, G. N. Geology 3, 297–302 (1975).

    Article  ADS  CAS  Google Scholar 

  35. Williams, H. R. Nature 266, 163–164 (1977).

    Article  ADS  Google Scholar 

  36. Richter, F. M. Rev. Geophys. Space Phys. 11, 223–287 (1973).

    Article  ADS  Google Scholar 

  37. Richter, F. M. & Parson, B. J. J. geophys. Res. 80, 2529–2541 (1975).

    Article  ADS  Google Scholar 

  38. McKenzie, D. P. & Richter, F. M. Scient. Am. 235, 76–89 (1976).

    Article  Google Scholar 

  39. Sinha, A. K. Chem. Geol. 18, 215–225 (1976).

    Article  ADS  CAS  Google Scholar 

  40. McIver, J. R. Contrib. Mineral. Petrol. 51, 99–118 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

GROVES, D., ARCHIBALD, N., BETTENAY, L. et al. Greenstone belts as ancient marginal basins or ensialic rift zones. Nature 273, 460–461 (1978). https://doi.org/10.1038/273460a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/273460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing