Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Demonstration by genetic suppression of interaction of GroE products with many proteins

Abstract

THE way in which proteins attain and maintain their final form is of fundamental importance. Recent work has focused on the role of a set of ubiquitous proteins, termed chaperonins1, in the assembly of phage2 and multisubunit proteins3,4. The range of chaperonin action is unknown; they could interact with most cellular polypeptides or have a limited subset of protein partners. Included in the chaperonin family is the essential heat-shock regulated Escherichia coli groEL gene product1, 5 ,6. Over-expression of the groE operon in E. coli causes enhanced assembly of heterologously expressed ribulose bisphosphate carboxylase subunits3 and suppresses the heat-sensitive mutant phenotype of several dnaA alleles7, 8. It has been inferred that suppression of heat-sensitive mutations is confined to dnaA alleles and that this confinement could reflect an interaction between the groE operon products and a dnaA protein aggregate at the replication origin7, 9. We now report that multiple copies of the groE operon suppress mutations in genes encoding several diverse proteins. Our data indicate a general role for the groE operon products, the GroEL and GroES proteins10, in the folding–assembly pathways of many proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hemmingsen S. M. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Friedman D. I. et al. Microbiol. Rev. 48, 299–325 (1984).

    Article  CAS  Google Scholar 

  3. Goloubinoff P., Gatenby, A. A. & Lorimer, G. H. Nature 337, 44–47 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Cheng, M. Y. et al. Nature 337, 620–625 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Fayet, O., Ziegelhoffer, T. & Georgopoulos, C. J. Bact. 171, 1379–1385 (1989).

    Article  CAS  Google Scholar 

  6. Neidhardt, F. C. & van Bogelen, R. A. in Escherichia coli and Salmonella typhimurium> (eds Neidhardt, F. C. et al.) 1334–1345 (American Society for Microbiology, Washington, D.C., 1987).

    Google Scholar 

  7. Fayet, O., Louarn, J.-M. & Georgopoulos, C. Molec. Gen. Genet. 202, 435–445 (1986).

    Article  CAS  Google Scholar 

  8. Jenkins, A. J., March, J. B., Oliver, I. R. & Masters, M. Molec Gen. Genet. 202, 446–454 (1986).

    Article  CAS  Google Scholar 

  9. McMacken, R., Silver, L. & Georgopoulos, C. in Escherichia coli and Salmonella typhimurium (eds Neidhardt, F. C. et al.) 564–612 (American Society for Microbiology, Washington, D.C., 1987).

    Google Scholar 

  10. Tilly, K., Murialdo, H. & Georgopoulos, C. Proc. natn. Acad. Sci. U.S.A. 78, 1629–1633 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Srivastava, D. K. & Bernhard, S. A. Science 234, 1081–1086 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Hong, J.-S. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 68, 3158–3162 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Hartman, P. E., Hartman, Z., Stahl, R. C. & Ames, B. N. Adv. Genet. 16, 1–34 (1971).

    Article  CAS  Google Scholar 

  14. Kohno, T. & Roth, J. Biochemistry 18, 1386–1392 (1979).

    Article  CAS  Google Scholar 

  15. Winkler, M. E. in Escherichia coli and Salmonella typhimurium (eds Neidhardt, F. C. et al.) 395–411 (American Society for Microbiology, Washington, D.C., 1987).

    Google Scholar 

  16. Ciesla, Z., Salvatore, F., Broach, J. R., Artz, S. W. & Ames, B. N. Analyt. Biochem 63, 44–55 (1975).

    Article  CAS  Google Scholar 

  17. Davis, R. W., Botstein, D. & Roth J. Advanced Bacterial Genetics (Cold Spring Harbor Laboratory, New York 1980).

    Google Scholar 

  18. LaRossa, R. & Soil, D. in Transfer RNA (ed. Altman, S.) 136–167 (MIT, Cambridge, Massachusetts, 1978).

    Google Scholar 

  19. Schimmel, P. A. Rev. Biochem. 56, 125–158 (1987).

    Article  CAS  Google Scholar 

  20. Schmidt, M. G., Rollo, E. E., Grodberg, J. & Oliver, D. B. J. Bact. 170, 3404–3414 (1988).

    Article  CAS  Google Scholar 

  21. Shiba, K., Ito, K., Yura, T. & Cerretti, D. P. EMBO J. 3, 631–635 (1984).

    Article  CAS  Google Scholar 

  22. Yu, M.-H. and King, J. Proc. natn. Acad. Sci. U.S.A. 81, 6584–6588 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Villafane, R. & King, J. J. molec. Biol. 204, 607–619 (1988).

    Article  CAS  Google Scholar 

  24. Neidhardt, F. C. et al. A. R. J. Bact. 145, 513–520 (1981).

    Article  CAS  Google Scholar 

  25. Whitfield Jr, H. J., Martin, R. G. & Ames, B. N. J. molec. Biol. 21, 335–355 (1966).

    Article  CAS  Google Scholar 

  26. Straus, D. B., Walter, W. A. & Gross, C. A. Genes Dev. 2, 1851–1858 (1988).

    Article  CAS  Google Scholar 

  27. Bochkareva, E. S., Lissin, N. M. & Girshovich, A. S. Nature 336, 254–257 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Enomoto, M. & Stacker, B. A. D. Virology 60, 503–514 (1974).

    Article  CAS  Google Scholar 

  29. Sanderson, K. E. & Roth, J. R. Microbiol. Rev. 47, 410–453 (1983).

    Article  CAS  Google Scholar 

  30. Fane, B. & King, J. Genetics 117, 167–171 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Dyk, T., Gatenby, A. & LaRossa, R. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 342, 451–453 (1989). https://doi.org/10.1038/342451a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342451a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing