Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Urea excretion as a strategy for survival in a fish living in a very alkaline environment

Abstract

Ammonia is toxic to all vertebrates. It can be converted to the less toxic urea, but this is a metabolically expensive process1 found only in terrestrial vertebrates that cannot readily excrete ammonia and marine fish that use urea as an osmotic filler. Freshwater fish mostly excrete ammonia2,3 with only a small quantity of urea4,5. It seems the ornithine cycle for urea production has been sup-pressed in all freshwater teleosts6 except for some airbreathers which, when exposed to air, increase urea synthesis via the cycle7. Here we show that the tilapia fish Oreochromls alcalicus grahami, the only fish living in Lake Magadi, an alkaline soda lake (pH = 9.6–10) in the Kenyan Rift Valley, excretes exclusively urea and has ornithine–urea cycle enzymes in its liver. A closely related species that lives in water at pH7.1 lacks these enzymes and excretes mainly ammonia with small amounts of urea produced via uricolysis4. It dies within 60 min when placed in water from Lake Magadi. We suggest that urea production via the ornithine-urea cycle permits O. a. grahami to survive the very alkaline conditions in Lake Magadi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Atkinson, D. E. & Bourke, E. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21), F947–F956 (1987).

    CAS  PubMed  Google Scholar 

  2. Smith, H. W. J. biol. Chem. 81, 727–747 (1929).

    CAS  Google Scholar 

  3. Olson, K. R. & Fromm, P. O. Comp. Biochem. Physiol. 40A, 999–1007 (1971).

    Article  Google Scholar 

  4. Goldstein, L. & Forster, R. P. Comp. Biochem. Physiol. 14, 567–576 (1965).

    Article  CAS  Google Scholar 

  5. Cvancara, V. A. Comp. Biochem. Physiol. 30, 489–496 (1969).

    Article  CAS  Google Scholar 

  6. Huggins, A. K., Skutsch, G. & Baldwin, E. Comp. Biochem. Physiol. 28, 587–602 (1969).

    Article  CAS  Google Scholar 

  7. Saha, N. & Ratha, B. K. J. exp. Zool. 241, 137–141 (1987).

    Article  CAS  Google Scholar 

  8. Wright, P. A. & Wood, C. M. J. exp. Biol. 114, 329–353 (1985).

    CAS  Google Scholar 

  9. Randall, D. J. & Wright, P. A. Can. J. Zool. (in the press).

  10. Coe, M. J. Acta Tropica 23, 146–177 (1966).

    Google Scholar 

  11. Eddy, F. B., Bamford, O. S. & Maloiy, G. M. O. J. exp. Biol. 91, 349–353 (1981).

    CAS  Google Scholar 

  12. Campbell, J. W. in Comparative Animal Physiology (ed. Prosser, C. L.) 279–316 (Saunders, W. B., Toronto, 1973).

    Google Scholar 

  13. Walsh, P. J., Parent, J. J. & Henry, R. P. J. exp. Biol. (in the press).

  14. Verdouw, H., von Echted, J. A. & Dekkers, E. M. J. Water Res. 12, 399–402 (1978).

    Article  CAS  Google Scholar 

  15. Chaney, A. L. & Marbeck, E. P. Clin. Chem. 8, 130–132 (1962).

    CAS  PubMed  Google Scholar 

  16. Crocker, C. L. Am. J. med. Technol. 33, 361–365 (1967).

    CAS  PubMed  Google Scholar 

  17. Henry, R. J., Sobel, C. & Kim, J. Am. J. clin. Pathol. 28, 152–160 (1957).

    Article  CAS  Google Scholar 

  18. Ritter, N. M., Smith, D. D. & Campbell, J. W. J. exp. Zool. 243, 181–188 (1987).

    Article  CAS  Google Scholar 

  19. Mommsen, T. P., Hochachka, P. W. & French, C. J. Can. J. Zool. 61, 1835–1846 (1983).

    Article  CAS  Google Scholar 

  20. Webb, J. T. & Brown, G. W. Science 208, 293–295 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Walsh, P. J., Bedolla, C. & Mommsen, T. P. J. exp. Zool. 241, 133–136 (1987).

    Article  CAS  Google Scholar 

  22. Brown, G. W. Jr et al. Science 153, 1653–1654 (1966).

    Article  ADS  CAS  Google Scholar 

  23. Kun, E. & Kearney, E. B. in Methods of Enzymatic Analysis Vol. 4 (ed. Bergmeyer, H. U.) 1802–1806 (Academic, New York, 1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall, D., Wood, C., Perry, S. et al. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature 337, 165–166 (1989). https://doi.org/10.1038/337165a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337165a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing