Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure determination by powder neutron diffraction at the spallation neutron source, ISIS

Abstract

The power and scope of powder diffraction methods have advanced dramatically in recent years, partly as a consequence of improved X-ray and neutron instrumentation1, and partly due to the develop-ment of Rietveld profile analysis2 for the refinement of low-symmetry structures. Emphasis has focused on neutron studies, with both constant wavelength and time-of-flight techniques, but progress has also been made in X-ray methods3, where synchrotron sources promise to play an important part4. At present, structural models with more than 100 variable parameters can be refined5,6, but the determination of structures from powder data has remained an empirical, rather than exact, science. The principal difficulty is that the overlapping of adjacent reflections introduces ambiguity into the assignment of integrated intensities, which are required to solve the phase problem. Nevertheless, significant advances have been made in this area7,8. With the advent of a new generation of ultrahigh-resolution powder diffractometers, at the Rutherford–Appleton Laboratory, ILL Grenoble, and the Brookhaven National Light Source, a new era in structure determination is signalled, with the prospect that the structures of new materials that cannot be obtained as single crystals might be determined by powder methods. Here we illustrate the practicability of this approach with an ab initio study of the structure of ferric arsenate, FeAsO4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hewat, A. W. Nucl. Instrum. Meth. 127, 361–370 (1975).

    Article  ADS  Google Scholar 

  2. Rietveld, H. M. J. appl. Crystallogr. 2, 65–71 (1969).

    Article  CAS  Google Scholar 

  3. Malmros, G. & Thomas, J. O. J. appl. Crystallogr. 10, 7–11 (1977).

    Article  Google Scholar 

  4. Cox, D. E., Hastings, J. B., Thomlinson, W. & Prewitt, C. Nucl. Instrum. Meth. 208, 573–578 (1983).

    Article  CAS  Google Scholar 

  5. Hathaway, B. J. & Hewat, A. W. J. Solid State Chem. 51, 364–375 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Battle, P. D., Cheetham, A. K., Harrison, W. T. A., Pollard, N. J. & Faber, J. J. Solid State Chem. 58, 221–225 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Berg, J.-E. & Werner, P.-E. Z. Krystallogr. 145, 310–320 (1977).

    CAS  Google Scholar 

  8. Christensen, A. N., Lehmann, M. S. & Neilsen, M. Aust. J. Phys. 38, 497–505 (1985).

    Article  ADS  Google Scholar 

  9. Shafer, E. C., Shafer, M. W. & Roy, R. Z. Kristallogr. 108, 263–275 (1956).

    Article  CAS  Google Scholar 

  10. D'Yvoire, F. C. r. hebd. Séanc. Acad. Sci., Paris 275C, 949–951 (1972).

    CAS  Google Scholar 

  11. Cheetham, A. K. & Skarnulis, A. J. Analyt. Chem. 53, 1060–1064 (1981).

    Article  CAS  Google Scholar 

  12. Johnson, M. W. & David, W. I. F. Rutherford–Appleton Lab. Rep. No. 85/112.

  13. GENIE Rutherford-Appleton Lab.Rep. No. 86/015.

  14. Visser, J. W. J. appl. Crystallogr. 2, 89–95 (1969).

    Article  CAS  Google Scholar 

  15. Pawley, G. S. J. appl. Crystallogr. 14, 357–361 (1981).

    Article  CAS  Google Scholar 

  16. Buras, B. Nucleonika 8, 259–266 (1963).

    CAS  Google Scholar 

  17. Gilmore, C. J. J. appl. Crystallogr. 17, 42–46 (1984).

    Article  CAS  Google Scholar 

  18. Schenk, H. Computational Crystallography (ed. Sayre, D.) 65–74 (Oxford University Press, 1982).

    Google Scholar 

  19. Matthewman, J.C., Thompson, P. & Brown, P. J. J. appl. Crystallogr. 15, 167–173 (1982).

    Article  CAS  Google Scholar 

  20. Sabine, T. M. Aust. J. Phys. 38, 507–518 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Sklar, N. & Post, B. Inorg. Chem. 6, 669–671 (1967).

    Article  CAS  Google Scholar 

  22. Ng, N. M. & Calvo, C. Can. J. Chem. 53, 2064–2067 (1975).

    Article  CAS  Google Scholar 

  23. Modaressi, A., Courtois, A., Gerardin, R., Malaman, B. & Gleitzer, C. J. Solid State Chem. 47, 245–255 (1983).

    Article  ADS  CAS  Google Scholar 

  24. Bouchdoug, M., Courtois, A., Gerardin, R., Steinmetz, J. & Gleitzer, C. J. Solid State Chem. 42, 149–157 (1982).

    Article  ADS  Google Scholar 

  25. Nord, A. G. & Kierkegaard, P. Acta chem. Scand. 22, 1466–1474 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheetham, A., David, W., Eddy, M. et al. Crystal structure determination by powder neutron diffraction at the spallation neutron source, ISIS. Nature 320, 46–48 (1986). https://doi.org/10.1038/320046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/320046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing