Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities

Abstract

A remarkable feature of the genomic RNAs of several plant viruses is the presence at the 3′ end of a region that exhibits tRNA-like functions, including aminoacylation1–3. The three genomic and single subgenomic RNAs of brome mosaic virus (BMV) accept tyrosine in vitro4 and in vivo5, the smallest 3′ fragment that can be aminoacylated being about 135 nucleotides long6. The roles of the tRNA-like properties are incompletely understood, but an involvement in replication rather than translational functions is likely3,7,8. We have recently shown (J.J.B. et al., in preparation) that the features recognized by the BMV RNA-specific RNA-dependent RNA polymerase (replicase)9,10 for the use of BMV RNA for complementary strand synthesis also lie within the tRNA-like structure. To distinguish between the roles of BMV RNA as a substrate for tyrosyl-tRNA synthetase and BMV replicase, we have now produced BMV RNAs with mutations at two separate loci within the tRNA-like structure. This has been achieved by transcription in vitro from specifically mutagenized cDNA, an approach permitting the generation of targeted mutants without regard to their viability in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pinck, M., Yot, P., Chapeville, F. & Duranton, H. Nature 226, 954–956 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Hall, T. C. Int. Rev. Cytol. 60, 1–26 (1979).

    Article  CAS  Google Scholar 

  3. Haenni, A. L., Joshi, S. & Chapeville, F. Prog. Nucleic Acid Res. molec. Biol. 27, 85–104 (1982).

    Article  CAS  Google Scholar 

  4. Hall, T. C., Shih, D. S. & Kaesberg, P. Biochem. J. 129, 969–976 (1972).

    Article  CAS  Google Scholar 

  5. Loesch-Fries, L. S. & Hall, T. C. Nature 298, 771–773 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Joshi, R. L., Joshi, S., Chapeville, F. & Haenni, A. L. EMBO J. 2, 1123–1127 (1983).

    Article  CAS  Google Scholar 

  7. Chen, J. M. & Hall, T. C. Biochemistry 12, 4570–4574 (1973).

    Article  CAS  Google Scholar 

  8. Hall, T. C., Pinck, M., Ma, Y., Duranton, H. M. & German, T. L. Virology 97, 354–365 (1979).

    Article  CAS  Google Scholar 

  9. Bujarski, J. J., Hardy, S. F., Miller, W. A. & Hall, T. C. Virology 119, 465–473 (1982).

    Article  CAS  Google Scholar 

  10. Miller, W. A. & Hall, T. C. Virology 125, 236–241 (1983).

    Article  CAS  Google Scholar 

  11. Sprinzl, M. & Cramer, F. Prog. Nucleic Acid Res. molec. Biol. 22, 1–69 (1979).

    Article  CAS  Google Scholar 

  12. Deutscher, M. P. Enzymes of Nucleic Acid Synthesis and Modification Vol. 2 (ed. Jacob, S. T.) 159–183 (CRC Press, Boca Raton, Florida, 1983).

    Google Scholar 

  13. Green, M. R., Maniatis, T. & Melton, D. A. Cell 32, 681–694 (1983).

    Article  CAS  Google Scholar 

  14. Contreras, R., Cheroutre, H., Degrave, W. & Fiers, W. Nucleic Acids Res. 10, 6353–6362 (1982).

    Article  CAS  Google Scholar 

  15. Butler, E. T. & Chamberlin, M. J. J. biol. Chem. 257, 5772–5778 (1982).

    CAS  PubMed  Google Scholar 

  16. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  17. Zarucki-Schulz, T. et al. J. biol. Chem. 257, 11070–11077 (1982).

    CAS  PubMed  Google Scholar 

  18. England, T. E., Bruce, A. G. & Uhlenbeck, O. C. Meth. Enzym. 65, 65–74 (1980).

    Article  CAS  Google Scholar 

  19. Schimmel, P. R. & Söll, D. A. Rev. Biochem. 48, 601–648 (1979).

    Article  CAS  Google Scholar 

  20. Bruce, A. G. & Uhlenbeck, O. C. Biochemistry 21, 3921–3926 (1982).

    Article  CAS  Google Scholar 

  21. Kohl, R. J. & Hall, T. C. J. gen. Virol. 25, 257–261 (1974).

    Article  CAS  Google Scholar 

  22. Ahlquist, P., Dasgupta, R. & Kaesberg, P. Cell 23, 183–189 (1981).

    Article  CAS  Google Scholar 

  23. Wilson, P. A. & Symons, R. H. Virology 112, 342–345 (1981).

    Article  CAS  Google Scholar 

  24. Miele, E. A., Mills, D. R. & Kramer, F. R. J. molec. Biol. 171, 281–295 (1983).

    Article  CAS  Google Scholar 

  25. Vieira, J. & Messing, J. Gene 19, 259–268 (1982).

    Article  CAS  Google Scholar 

  26. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  27. Guo, L.-H. & Wu, R. Meth. Enzym. 100, 60–96 (1983).

    Article  CAS  Google Scholar 

  28. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  29. Beaucage, S. L. & Caruthers, M. H. Tetrahedron Lett. 22, 1859–1862 (1981).

    Article  CAS  Google Scholar 

  30. Goodman, H. M. & MacDonald, R. J. Meth. Enzym. 68, 75–90 (1979).

    Article  CAS  Google Scholar 

  31. Rietveld, K., Pleij, W. A. & Bosch, L. EMBO J. 2, 1079–1085 (1983).

    Article  CAS  Google Scholar 

  32. Sanger, F., Coulsen, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  33. Kiberstis, P. A. & Hall, T. C. J. gen. Virol. 64, 2073–2077 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dreher, T., Bujarski, J. & Hall, T. Mutant viral RNAs synthesized in vitro show altered aminoacylation and replicase template activities. Nature 311, 171–175 (1984). https://doi.org/10.1038/311171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/311171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing