Skip to main content
Log in

Effects of pre- and post-irradiation glucan treatment on pluripotent stem cells, granulocyte, macrophage and erythroid progenitor cells, and hemopoietic stromal cells

  • Published:
Experientia Aims and scope Submit manuscript

Summary

Glucan, a beta-1, 3 polyglucose, was administered to mice either 1 h before or 1 h after a 650 rad exposure to cobalt-60 radiation. Compared to radiation controls, glucan-treated mice consistantly exhibited a more rapid recovery of pluripotent stem cells and committed granulocyte, macrophage, and erythroid progenitor cells. This may partially explain the mechanism by which glucan also enhances survival in otherwise lethally irradiated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hassid, W. Z., Joslyn, M. A., and McCready, M., The molecular constitution of an insoluble polysaccharide from yeastSaccharomyces cerevisiae. J. Am. chem. Soc.63 (1941) 295–298.

    Article  CAS  Google Scholar 

  2. DiLuzio, N. R., Williams, D. L., McNamee, R. B., Edwards, B. F., and Kitahama, A., Comparative tumor-inhibitory and antibacterial activity of soluble and particulate glucan. Int. J. Cancer.24 (1979) 773–779.

    Article  CAS  Google Scholar 

  3. DiLuzio, N. R., Pisano, J. C., and Saba, T. M., Evaluation of the mechanism of glucan induced stimulation of the reticuloendothelial system. J. reticuloendoth. Soc.7 (1970) 731–742.

    CAS  Google Scholar 

  4. DiLuzio, N. R., in: Pharmacology of the reticuloendothelial system-accent on glucan; in The reticuloendothelial system in health and disease: Functions and characteristics, pp. 412–421. Eds. S. M. Reichard, M. E. Escobar and H. Friedman. Plenum Press, New York 1976.

    Google Scholar 

  5. Cook, J. A., Taylor, D., Cohen, C., Rodrigue, J., Malshet, V., and DiLuzio, N. R., Comparative evaluation of the role of macrophages and lymphocytes in mediating the antitumor action of glucan, in: Immune modulation and control of neoplasma by adjuvant therapy, pp. 183–194. Ed. M. A. Chirigos, Raven Press, New York 1978.

    Google Scholar 

  6. DiLuzio, N. R., Evaluation of the graft-vs-host reaction of the immune competence of lymphoid cells of mice with altered reticuloendothelial function. J. reticuloendoth. Soc.4 (1967) 459–475.

    Google Scholar 

  7. Wooles, W. R., and DiLuzio, N. R., Reticuloendothelial function and immune response. Science142 (1963) 1078–1080.

    Article  CAS  PubMed  Google Scholar 

  8. Burgaleta, C., and Golde, D. W., Effect of glucan on granulopoiesis and macrophage genesis in mice. Cancer Res.37 (1978) 1739–1742.

    Google Scholar 

  9. Niskanen, E. O., Burgaleta, C., Cline, M. J., and Golde, D. W., Effect of glucan, a macrophage activator, on murine hemopoietic cell proliferation in diffusion chambers in mice. Cancer Res.38 (1978) 1406–1409.

    CAS  PubMed  Google Scholar 

  10. Patchen, M. L., and Lotzova, E., Modulation of murine hemopoiesis by glucan. Exp. Hemat.8 (1980) 409–422.

    CAS  PubMed  Google Scholar 

  11. Patchen, M. L., and MacVittie, T. J., Dose-dependent responses of murine pluripotent stem cells and myeloid and erythroid progenitor cells following administration of the immunomodulating agent glucan. Immunopharmacology5 (1983) 303–313.

    Article  CAS  PubMed  Google Scholar 

  12. Patchen, M. L., and MacVittie, T. J., Temporal response of murine pluripotent stem cells and myeloid and erythroid progenitor cells to low-dose glucan treatment. Acta hemat.70 (1983) 281–288.

    Article  CAS  Google Scholar 

  13. Patchen, M. L., and Lotzova, E., The role of macrophages and T-lymphocytes in glucan mediated alteration of murine hemopoiesis. Biomedicine34 (1981) 71–77.

    CAS  PubMed  Google Scholar 

  14. Patchen, M. L., and MacVittie, T. J., Use of glucan to enhance hemopoietic recovery after exposure to cobalt-60 irradiation, in: Macrophages and natural killer cells, pp. 267–272. Eds S. J. Norman and E. Sorkin, Plenum Press, New York 1982.

    Chapter  Google Scholar 

  15. Pospisil, M., Jary, J., Netikova, J., and Marek, M., Glucan-induced enhancement of hemopoietic recovery in gamma-irradiated mice. Experientia38 (1982) 1232–1234.

    Article  CAS  PubMed  Google Scholar 

  16. Wathen, L. K., Knapp, S. A., and DeGowin, R. L., Suppression of marrow stromal cells and microenvironmental damage following sequential radiation and cyclophosphamide. Int. J. Radiat. Oncol. biol. Phys.7 (1981) 935–941.

    Article  CAS  PubMed  Google Scholar 

  17. Till, J. E., and McCulloch, E. A., A direct measurement of radiation sensitivity of normal bone marrow cells. Radiat. Res.14 (1961) 213–222.

    Article  CAS  PubMed  Google Scholar 

  18. MacVittie, T. J., Alterations induced in macrophage and granulocyte-macrophage colony-forming cells by a single injection of mice withCorynebacterium parvum. J. reticuloendoth. Soc.26 (1979) 479–490.

    CAS  Google Scholar 

  19. Bradley, T. R., and Metcalf, D., The growth of mouse bone marrow cells in vitro. Aust. J. exp. Biol. med. Sci.44 (1966) 287–300.

    Article  CAS  PubMed  Google Scholar 

  20. Pluznik, D. H., and Sachs, L., The cloning of normal ‘mast’ cells in tissue culture. J. Cell Physiol.66 (1965) 319–324.

    Article  CAS  PubMed  Google Scholar 

  21. MacVittie, T. J., and Weatherly, T. L., Characteristics of thein vitro monocyte — macrophage colony forming cells detected in mouse thymus and lymph nodes, in: Experimental Hematology Today, pp. 147–156. Eds. S. J. Baum and G. D. Ledney, Springer-Verlag, New York 1977.

    Google Scholar 

  22. Weinberg, S. R., McCarthy, E. G., MacVittie, T. J., and Baum, S. J., Effect of low-dose irradiation on pregnant mouse hemopoiesis. Br. J. Haemat.48 (1981) 127–135.

    Article  CAS  Google Scholar 

  23. Stephenson, J. R., Axelrad, A. A., McLeod, D. L., and Shreeve, M. M., Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. natl Acad. Sci. USA68 (1971) 1542–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McLeod, D. L., Shreeve, M. M., and Axelrad, A. A., Culture system in vitro for the assay of erythropoietic and megakaryocytic progenitors; in In vitro aspects of erythropoiesis, pp. 31–36. Ed. M. J. Murphy, Springer, New York 1978.

    Chapter  Google Scholar 

  25. Patchen, M. L., Immunomodulation and Hemopoiesis. Surv. Immun. Res.2 (1983) 237–242.

    Article  CAS  Google Scholar 

  26. Kokosis, P. L., Williams, D. L., Cook, J. A., and DiLuzio, N. R., Increased resistance toStaphylococcus aureus infection and enhancement in serum lysozyme activity by glucan. Science199 (1978) 1340–1342.

    Article  Google Scholar 

  27. Reynolds, J. A., Kastello, M. D., Harrington, D. G., Crobbs, C. L., Peters, C. J., Jemski, J. V., Scott, G. H., and DiLuzio, N. R., Glucan-induced enhancement of host resistance to selected infectious disease. Infect. Immun.30 (1980) 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiLuzio, N. R., Williams, D. L., and Browder, W., Immunopharmacology of glucan: The modification of infectious disease, in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patchen, M.L., MacVittie, T.J. & Wathen, L.M. Effects of pre- and post-irradiation glucan treatment on pluripotent stem cells, granulocyte, macrophage and erythroid progenitor cells, and hemopoietic stromal cells. Experientia 40, 1240–1244 (1984). https://doi.org/10.1007/BF01946654

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01946654

Key words

Navigation