Skip to main content
Log in

Progress in molecular parasitology

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Substantial progress has been made in the last ten years in understanding the structural and functional organization of parasitic protozoa and helminths and the complex physiological relationships that exist between these organisms and their hosts. By employing the new powerful techniques of biochemistry, molecular biology and immunology the genomic organization in parasites, the molecular basis of parasite's variation in surface antigens and the biosynthesis, processing, transport and membrane anchoring of these and other surface proteins were extensively investigated. Significant advances have also been made in our knowledge of the specific and often peculiar strategies of intermediary metabolism, cell compartmentation, the role of oxygen for parasites and the mechanisms of antiparasitic drug action. Further major fields of interest are currently the complex processes which enables parasites to evade the host's immune defense system and other mechanisms which have resulted in the specific adaptations which enabled parasites to survive within their host environments. Various approaches in molecular and biochemical parasitology and in immunoparasitology have been proven to be of high potential for serodiagnosis, immunoprophylaxis and drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aman, R.A., Kenyon, G.L., and Wang, C.C., Cross-linking of the enzymes in the glycosome ofTrypanosoma brucei. J. biol. Chem.260 (1985) 6966–6973.

    CAS  PubMed  Google Scholar 

  2. August, J.T., Molecular Parasitology. Academic Press, New York 1984.

    Google Scholar 

  3. Ballou, W.R., Rothbard, J., Wirtz, R.A., Gordon, D.M., Williams, J.S., Gore, R.W., Schneider, I., Hollingdale, M.R., Beaudoin, R.L., Maloy, W.L., Miller, L.H., and Hockmeyer, W.T., Immunogenicity of synthetic peptides from circumsporozoite protein ofPlasmodium falciparum. Science228 (1985) 996–998.

    CAS  PubMed  Google Scholar 

  4. Balloul, J.M., Pierce, R.J., Grzych, J.-M., and Capron, A., In vitro synthesis of a 28 kD antigen present on the surface of the schistosomulum ofSchistosoma mansoni. Molec. Biochem. Parasitol.16 (1985) 105–114.

    Google Scholar 

  5. barrett, J., Biochemistry of Parasitic Helminths. Mac Millan Publishers, London 1981.

    Google Scholar 

  6. Bernards, A., Antigenic variation of trypanosomes. Biochim. biophys. Acta824 (1984) 1–15.

    Google Scholar 

  7. Bienen, E.J., Hill, G.C., and Shin, K., Elaboration of mitochondrial function duringTrypanosoma brucei differentiation. Molec. Biochem. Parasitol.7 (1983) 75–86.

    CAS  Google Scholar 

  8. Borst, P., and Cross, G.A.M., Molecular basis for trypanosome antigenic variation. Cell29 (1982) 291–303.

    CAS  PubMed  Google Scholar 

  9. Borst, P., and Hoeijmakers, J., Kinetoplast DNA. Plasmid2 (1979) 20–40.

    CAS  PubMed  Google Scholar 

  10. Bowtell, D.D.L., Saint, R.B., Rickard, M.D., and Mitchell, G.F., Expression ofTaenia taeniaeformis antigens inEscherichia coli. Molec. Biochem. Parasitol.13 (1984) 173–185.

    CAS  Google Scholar 

  11. Bülow, R., and Overath, P., Synthesis of a hydrolase for the membrane form variant surface glycoprotein is repressed during transformation ofTrypanosoma brucei. FEBS Lett.187 (1985) 105–110.

    PubMed  Google Scholar 

  12. Capron, A., Dessaint, J.-P., Capron, M., Joseph, M. and Torpier, G., Effector mechanisms of immunity to schistosomes and their regulation. Immun. Rev.61 (1982) 41–66.

    CAS  PubMed  Google Scholar 

  13. Cardoso de Almedia, M.L., Le Page, R.W.F., and Turner, M.J., The release of variant surface glycoproteins ofTrypanosoma brucei, in: Molecular Parasitology, pp. 19–31. Ed. J. T. August, Academic Press, New York 1984.

    Google Scholar 

  14. Cheung, A., Shaw, A.R., Leban, J., and Perrin, L.H., Cloning and expression inEscherichia coli of a surface antigen ofPlasmodium falciparum merozoites. EMBO J.4 (1985) 1007–1012.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cordingley, J.S., Taylor, D.W., Dunne, D.W., and Butterworth, A.E., Clone banks of cDNA from the parasiteSchistosoma mansoni: Isolation of clones containing a potentially immunodiagnostic antigen gene. Cell26 (1983) 25–39.

    CAS  Google Scholar 

  16. Cornelissen, A.W.C.A., Johnson, P.J., Kooter, J.M., Van der Ploeg, L.H.T., and Borst, P., Two simultaneously active VSG gene transcription units in a singleTrypanosoma brucei variant. Cell41 (1985) 825–832.

    CAS  PubMed  Google Scholar 

  17. Cornish, R.A., Wilkes, J., and Mettrick, D.F., A study of phosphoenolpyruvate carboxykinase fromMoniliformis dubius (Acanthocephala). Molec. Biochem. Parasitol.2 (1981) 151–166.

    CAS  Google Scholar 

  18. Cox, F.E.G., Towards schistosomiasis vaccines. Nature314 (1985) 402–403.

    CAS  PubMed  Google Scholar 

  19. Cronin, C.N., and Tipton, K.F., Purification and regulatory properties of phosphofructokinase fromTrypanosoma (Trypanozoon) brucei brucei. Biochem. J.227 (1985) 113–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cross, G.A.M., Identification, purification and properties of clonespecific glycoprotein antigens constituting the surface coat ofTrypanosoma brucei. Parasitology71 (1975) 393–417.

    CAS  PubMed  Google Scholar 

  21. Dame, J.B., Williams, J.L., McCutchan, T.F., Weber, J.L., Wirtz, R.A., Hockmeyer, W.T., Maloy, W.L., Haynes, J.D., Schneider, I., Roberts, D., Sanders, G.S., Reddy, E.P., Diggs, C.L., and Miller, L.H., Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasitePlasmodium falciparum. Science225 (1984) 593–599.

    CAS  PubMed  Google Scholar 

  22. Dawson, P.J., Gutteridge, W.E., and Gull, K., Purification and characterization of tubulin from the parasitic nematode,Ascaridia galli. Molec. Biochem. Parasitol.7 (1983) 267–277.

    CAS  Google Scholar 

  23. De la Cruz, V.F., Lake, J.A., Simpson, A.M., and Simpson, L., A minimal ribosomal RNA: Sequence and secondary structure of the 9S kinetoplast ribosomal RNA fromLeishmania tarentolae. Proc. natn. Acad. Sci. USA82 (1985) 1401–1405.

    Google Scholar 

  24. De Lange, T., Liu, A.Y.C., Van der Ploeg, L.H.T., Borst, P., Tromp, M.C., and Van Boom, J.H., Tandem repetition of the 5′mini-exon of variant surface glycoprotein genes. A multiple promotor for VSG gene transcription? Cell34 (1983) 891–900.

    PubMed  Google Scholar 

  25. De Lange, T., Michels, P.A.M., Veerman, H.J.G., Cornelissen, A.W.C.A., and Borst, P., Many trypanosome mRNAs share a common 5′terminal sequence. Nucl. Acids Res.12 (1984) 3777–3790.

    PubMed  PubMed Central  Google Scholar 

  26. Di Iorio, E.E., Meier, U.T., Smit, J.D.G., and Winterhalter, K.H., Kinetics of oxygen and carbon monoxide binding to liver fluke (Dicrocoelium dendriticum) hemoglobin. An extreme case. J. biol. Chem.260 (1985) 2160–2164.

    PubMed  Google Scholar 

  27. Donelson, J.E., and Turner, M.J., How the trypanosome changes its coat. Scientific American (1985) 32–39.

  28. Ellis, J., Ozaki, L.S., Gwadz, R.W., Cochrane, A.H., Nussenzweig, V., Nussenzweig, R.S. and Godson, G.N., Cloning and expression inE. coli of the malarial sporozoite surface antigen gene fromPlasmodium knowlesi. Nature302 (1983) 536–538.

    CAS  PubMed  Google Scholar 

  29. Enea V., Arnot, D., Schmidt, E., Cochrane, A., Gwadz, R., and Nussenzweig, R.S., Circumsporozoite gene ofPlasmodium cynomolgi (Gombak): cDNA cloning and expression of the repetitive circumsporozoite epitope. Proc. natn. Acad. Sci. USA81 (1984) 7520–7524.

    CAS  Google Scholar 

  30. Enea, V., Ellis, J., Zavala, F., Arnot, D.E., Asavanich, A., Masuda, A., Quakyi, I., and Nussenzweig, R., DNA cloning ofPlasmodium falciparum circumsporozoite gene: Amino acid sequence of repetitive epitope. Science225 (1984) 628–630.

    CAS  PubMed  Google Scholar 

  31. Eperon, I.C., Janssen, J.W.G., Hoeijmakers, J.H.J., and Borst, P., The major transcripts of the kinetoplast DNA ofTrypanosoma brucei are very small ribosomal RNAs. Nucl. Acids Res.11 (1983) 105–125.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Esser, K.M., and Schoenbechler, M.J., Expressioin of two variant surface glycoproteins in individual African trypanosomes during antigenic switching. Science229 (1985) 190–193.

    CAS  PubMed  Google Scholar 

  33. Fairlamb, A.H., Blackburn, P., Ulrich, P., Chait, B.T., and Cerami, A., Trypanothione: A novel bis(glutathiony)spermidine cofactor for glutathione reductase in trypanosomatids. Science227 (1985) 1485–1487.

    CAS  PubMed  Google Scholar 

  34. Feagin, J.E., Jasmer, D.P., and Stuart, K., Apocytochrome b and other mitochondrial DNA sequences are differentially expressed during the life cycle ofTrypanosoma brucei. Nucl. Acids Res.13 (1985) 4577–4596.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Feagin, J.E., and Stuart, K. Differential expression of mitochondrial genes between life cycle stages ofTrypanosoma brucei. Proc. natn. Acad. Sci. USA82 (1985) 3380–3384.

    CAS  Google Scholar 

  36. Ferguson, M.A.J., Haldar, K., and Cross, G.A.M.,Trypanosoma brucei variant surface glycoprotein has asn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J. biol. Chem.260 (1985) 4963–4968.

    CAS  PubMed  Google Scholar 

  37. Fodge, D.W., Gracy, R.W. and Harris, B.G., Studies on enzymes from parasitic helminths. I. Purification and physical properties of malic enzyme from the muscle tissue ofAscaris suum. Biochim. biophys. Acta268 (1972) 271–284.

    CAS  PubMed  Google Scholar 

  38. Freymann, D.M., Metcalf, P., Turner, M., and Wiley, D.C., 6 Å-resolution X-ray structure of a variable surface glycoprotein fromTrypanosoma brucei. Nature311 (1984) 167–169.

    CAS  PubMed  Google Scholar 

  39. Gibson, W.C., Molecular karyotyping. Parasit. Today1 (1985) 64–65.

    CAS  Google Scholar 

  40. Godson, G.N., Ellis, J., Lupski, J.R., Ozaki, L.S., and Svec, P., Molecular biology ofPlasmodium knowlesi sporozoites: Cloning and expression of the surface antigen gene. In: Molecular Parasitology, pp. 127–142. Ed. J.T. August. Academic Press, New York 1984.

    Google Scholar 

  41. Gottlieb, M. and Dwyer, D.M.,Leishmania donovani: Surface membrane acid phosphatase activity of promastigotes. Expl. Parasitol.52 (1981) 117–128.

    CAS  Google Scholar 

  42. Grausz, D., Dissous, C., Capron, A., and Roskam, W., Messenger RNA extracted fromSchistosoma mansoni larval forms codes for parasite antigens when translated in vitro. Molec. Biochem. Parasitol.7 (1983) 293–301.

    CAS  Google Scholar 

  43. Grzych, J.M., Capron, M., Dissous, C., and Capron, A., Blocking activity of rat monoclonal antibodies in experimental schistosomiasis. J. Immun.133 (1984) 998–1004.

    CAS  PubMed  Google Scholar 

  44. Gutteridge, W.E., and Coombs, G.H., Biochemistry of Parasitic Protozoa. MacMillan Press, London 1977.

    Google Scholar 

  45. Hall, R., Hyde, J.E., Goman, M., Simmons, D.L., Hope, I.A., Mackay M., Scaife, J., Merkli, B., Richle, R. and Stocker, J., Major surface antigen gene of a human malaria parasite cloned and expressed in bacteria. Nature311 (1984) 379–382.

    CAS  PubMed  Google Scholar 

  46. Hall, R., Osland, A., Hyde, J.E., Simmons, D.L., Hope, I.A., and Scaife, J.G., Processing, polymorphism and biological significance of P190, a major surface antigen of the erythrocyte forms ofPlasmodium falciparum. Molec. Biochem. Parasitol.11 (1984) 61–80.

    CAS  Google Scholar 

  47. Hammond, D.J., and Gutteridge, W.E., Purine and pyrimidine metabolism in the Trypanosomatidae. Molec. Biochem. Parasitol.13 (1984) 243–261.

    CAS  Google Scholar 

  48. Hart, D.T., and Opperdoes, F.R., The occurrence of glycosomes (microbodies) in the promastigote stage of four majorLeishmania species. Molec. Biochem. Parasitol.13 (1984) 159–172.

    CAS  Google Scholar 

  49. Hill, G.C., Shimer, S.P., Caughey, B., and Sauer, L.S., Growth of infective forms ofTrypanosoma rhodesiense in vitro, the causative agent of African trypanosomiasis. Science202 (1978) 763–765.

    CAS  PubMed  Google Scholar 

  50. Hirumi, H., Doyle, J.J., and Hirumi, K., African trypanosomes: Cultivation of animal-infectiveTrypanosoma brucei in vitro. Science196 (1977) 992–994.

    CAS  PubMed  Google Scholar 

  51. Johnson, B.J.B., Hill, G.C., and Donelson, J.E., The maxicircle ofTrypanosoma brucei kinetoplast DNA encodes apocytochromeb. Molec. Biochem. Parasitol.13 (1984) 135–146.

    CAS  Google Scholar 

  52. Kemp, D.J., Corcoran, L.M., Coppel, R.L., Stahl, H.D., Dianco, A.E., Brown, G.V., and Anders, R.F., Size variation in chromosomes from independent cultured isolates ofPlasmodium falciparum. Nature315 (1985) 347–350.

    CAS  PubMed  Google Scholar 

  53. Kilejian, A., A unique histidine-rich polypeptide from the malaria parasite,Plasmodium lophurae. J. biol. Chem.249 (1974) 4650–4655.

    CAS  PubMed  Google Scholar 

  54. Kilejian, A., Does a histidine-rich protein fromPlasmodium lophurae have a function in merozoite penetration? J. Protozool.23 (1976) 272–277.

    CAS  PubMed  Google Scholar 

  55. Kilejian, A., Immunological cross-reactivity of the histidine-rich protein ofPlasmodium lophurae and the knob protein ofPlasmodium falciparum. J. Parasitol.69 (1983) 257–261.

    CAS  PubMed  Google Scholar 

  56. Kilejian A., Liao, T.-H., and Trager, W., Studies on the primary structure and biosynthesis of a histidine-rich polypeptide from the malaria parasite,Plasmodium lophurae. Proc. natn. Acad. Sci. USA72 (1975) 3057–3059.

    CAS  Google Scholar 

  57. Knight, M., Simpson, A.J.G., Payares, G., Chaudri, M., and Smithers, S.R., Cell-free synthesis ofSchistosoma mansoni surface antigens: stage specificity of their expression. EMBO J.3 (1984) 213–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Köhler, P., The strategies of energy conservation in helminths. Molec. Biochem. Parasitol.17 (1985) 1–18.

    Google Scholar 

  59. Köhler, P., and Bachmann, R., Mechanisms of respiration and phosphorylation inAscaris muscle mitochondria. Molec. Biochem. Parasitol.1 (1980) 75–90.

    Google Scholar 

  60. Köhler, P., and Bachmann, R., Helminth tubulin and the action of benzimidazole carbamate drugs. Zbl. Bakt. Hyg. (A)258 (1984) 426–427.

    Google Scholar 

  61. Köhler, P., Bryant, C., and Behm, C.A., ATP synthesis in a succinate decarboxylase system fromFasciola hepatica mitochondria. Int. Parasit.8 (1978) 399–404.

    Google Scholar 

  62. Komuniecki, R., Fekete, S., and Thissen, J., 2-Methylbutyryl CoA dehydrogenase from mitochondria ofAscaris suum and its relationship to NADH-dependent 2-methylcrononyl CoA reduction. Biochem. biophys. Res. Commun.118 (1984) 783–788.

    CAS  PubMed  Google Scholar 

  63. Komuniecki, R., Fekete, S. and Thissen-Parra, J., Purification and characterization of the 2-methyl branched-chain acyl-CoA dehydrogenase, an enzyme involved in NADH-dependent enoyl-CoA reduction in anaerobic mitochondria of the nematode,Ascaris suum. J. biol. Chem.260 (1985) 4770–4777.

    CAS  PubMed  Google Scholar 

  64. Komuniecki, R., Komuniecki, P., and Saz, H.J., Purification and properties of theAscaris pyruvate dehydrogenase complex. Biochim. biophys. Acta571 (1979) 1–11.

    CAS  PubMed  Google Scholar 

  65. Lanar, D.E., Pearce, E.J., and Sher, A., Expression inEscherichia coli of twoSchistosoma mansoni genes that encode major antigens recognized by immune mice. Molec. Biochem. Parasitol.17 (1985) 45–60.

    CAS  Google Scholar 

  66. Landfear, S.M., and Wirth, D.F., Control of tubulin gene expression in the parasitic protozoanLeishmania enriettii. Nature309 (1984) 716–717.

    CAS  PubMed  Google Scholar 

  67. Laurent, M., Pays, E., Delinte, K., Magnus, E., Van Meirvenne, N., and Steinert, M., Evolution of a trypanosome surface antigen gene repertoire linked to non-duplicative gene activation. Nature308 (1984) 370–373.

    CAS  PubMed  Google Scholar 

  68. Lecompte, J., La Mar, N., Winterhalter, K.H., and Smit, J.D.G., Proton nuclear magnetic resonance investigation of the heme cavity structure of liver fluke (Dicrocoelium dendriticum) methemoglobin. J. molec. Biol.180 (1984) 357–370.

    Google Scholar 

  69. Leech, J.H., Barnwell, J.W., Aikawa, M., Miller, L.H., and Howard, R.J.,Plasmodium falciparum malaria: Association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocytes skeleton. J. Cell Biol.98 (1984) 1256–1264.

    CAS  PubMed  Google Scholar 

  70. Levi-Schaffer, F., Hazdai-Tarrab, R., Schryer, M.D., Arnon, R., and Smolarsky, M., Isolation and partial characterization of the tegumental outer membrane of schistosomula ofSchistosoma mansoni. Molec. Biochem. Parasitol.13 (1984) 283–300.

    CAS  Google Scholar 

  71. Lindmark, D.G., and Müller, M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellateTritrichomonas foetus, and its role in pyruvate metabolism. J. biol. Chem.248 (1973) 7724–7728.

    CAS  PubMed  Google Scholar 

  72. Mack, S.R., and Müller, M., Effect of oxygen and carbon dioxide on the growth ofTrichomonas vaginalis andTritrichomonas foetus. J. Parasit.64 (1978) 927–929.

    CAS  PubMed  Google Scholar 

  73. Marczak, R., Gorrell, T.E., and Müller, M., Hydrogenosomal ferredoxin of the anaerobic protozoan,Tritrichomonas foetus. J. biol. Chem.258 (1983) 12427–12433.

    CAS  PubMed  Google Scholar 

  74. Mauel, J., Mechanisms of survival of protozoan parasites in mononuclear phagocytes. Parasitology88 (1984) 579–592.

    CAS  PubMed  Google Scholar 

  75. Mazier, D., Beaudoin, R.L., Mellouk, S., Druilhe, P., Texier, B., Trosper, J., Miltgen, F., Landau, I., Paul, C., Brandicourt, O., Guguen-Guillouzo, C., and Langlois, P., Complete development of hepatic stages ofPlasmodium falciparum in vitro. Science227 (1985) 440–442.

    CAS  PubMed  Google Scholar 

  76. McCutchan, T.F., Hansen, J.L., Dame, J.B., and Mulins, J.A., Mung bean nuclease cleavesPlasmodium genomic DNA at sites before and after genes. Science225 (1984) 625–628.

    CAS  PubMed  Google Scholar 

  77. McDiarmid, S.S., Dean, L.L., and Podesta, R.B., Sequential removal of outer bilayers and apical plasma membrane from the surface epithelial syncytium ofSchistosoma mansoni. Molec. Biochem. parasitol.7 (1983) 141–157.

    CAS  Google Scholar 

  78. Misset, O., and Opperdoes, F.R., Simultaneous purification of hexokinase, class-I fructose-bisphosphate aldolase, triosephosphate isomerase and phosphoglycerate kinase fromTrypanosoma brucei. Eur. J. Biochem.144 (1984) 475–483.

    CAS  PubMed  Google Scholar 

  79. Müller, M., The hydrogenosome, in: The Eukaryotic Microbial Cell, pp. 127–142. Eds G.W. Gooday, D. Lloyd and A.P.J. Trinci. Cambridge University Press 1980.

  80. Myler, P., Nelson, R.G., Agabian, N. and Stuart, K., Two mechanisms of expression of a predominant variant antigen gene ofTrypanosoma brucei. Nature309 (1984) 282–284.

    CAS  PubMed  Google Scholar 

  81. Opperdoes, F.R., Baudhuin, P., Coppens, I., De Roe, C., Edwards, S.W., Weijers, P.J., and Misset, O., Purification, morphometric analysis and characterization of the glycosomes (microbodies) of the protozoan hemoflagellateTrypanosoma brucei. J. Cell Biol.98 (1984) 1178–1184.

    CAS  PubMed  Google Scholar 

  82. Opperdoes, F.R. and Borst, P., Localization of nine glycolytic enzymes in a microbody-like organelle inTrypanosoma brucei: The glycosome. FEBS Lett.80 (1977) 360–364.

    CAS  PubMed  Google Scholar 

  83. Opperdoes, F.R., Misset, O., and Hart, D.T., Metabolic pathways associated with the glycosomes (microbodies) of the Trypanosomatidae, in: Molecular Parasitology, pp. 63–75 Ed. J.T. August, Academic Press, New York 1984.

    Google Scholar 

  84. Payne, M., Rothwell, V., Jasmer, D.P., Feagin, J.E., and Stuart, K., Identification of mitochondrial genes inTrypanosoma brucei and homology to cytochromec oxidase II in two different reading frames. Molec. Biochem. Parasitol.15 (1985) 159–170.

    CAS  Google Scholar 

  85. Philipp, M., and Rumjanek, F.D., Antigenic and dynamic properties of helminth surface structures. Molec. Biochem. Parasitol.10 (1984) 245–268.

    CAS  Google Scholar 

  86. Ravetch, J.V., Feder, R., Pavlovec, A., and Blobel, G., Primary structure and genomic organization of the histidine-rich protein of the malaria parasitePlasmodium lophurae. Nature312 (1984) 616–620.

    CAS  PubMed  Google Scholar 

  87. Reeves, R.E., Pyrophosphate energy conservation in a parasite and its suppression by chemical agents, in: Molecular Parasitology, pp. 267–274. Ed. J.T. August. Academic Press, New York 1984.

    Google Scholar 

  88. Remaley, A.T., Das, S., Campbell, P.I., LaRocca, G.M., Pope, M.T., and Glew, R.H., Characterization ofLeishmania donovani acid phosphatases. J. biol. Chem.260 (1985) 880–886.

    CAS  PubMed  Google Scholar 

  89. Remaley, A.T., Kuhns, D.B., Basford, R.E., Glew, R.H., and Kaplan, S.S., Leishmanial phosphatase blocks neutrophil O 2 production. J. biol. Chem.259 (1984) 11173–11175.

    CAS  PubMed  Google Scholar 

  90. Rioux, A., and Komuniecki, R., 2-Methylvalerate formation in mitochondria ofAscaris suum and its relationship to anaerobic energy generation. J. comp. Physiol. (B)154 (1983) 273–281.

    Google Scholar 

  91. Rumjanek, F.D., McLaren, D.J., and Smithers, R., Serum-induced expression of a surface protein in schistosomula ofSchistosoma mansoni: A possible receptor for lipid uptake. Molec. Biochem. Parasitol.9 (1983) 337–350.

    CAS  Google Scholar 

  92. Saz, H.J., Anaerobic energy-yielding rections. In: Molecular Parasitology, pp. 251–265. Ed. J.T. August, Academic Press, New York 1984.

    Google Scholar 

  93. Schwartz, D.C., and Cantor, C.R., Separation of yeast chromosome-sized DNA by pulsed field gradient gel electrophoresis. Cell37 (1984) 67–75.

    CAS  PubMed  Google Scholar 

  94. Simpson, A.G.J., Correa-Oliveira, R., Smithers, S.R., and Sher, A., The exposed carbohydrates of schistosomula ofSchistosoma mansoni and their modification during maturation in vitro. Molec. Biochem. Parasitol.8 (1983) 191–205.

    CAS  Google Scholar 

  95. Simpson, A.J.G., and Smithers, S.R., Schistosomes: Surface, egg and circulating antigens, in: Current Topics in Microbiology and Immunology, vol. 120, pp. 205–239. Ed. R.M.E. Parkhouse, Springer-Verlag Heidelberg 1985

    Google Scholar 

  96. Smit, J.D.G., and Winterhalter, K.H., Crystallographic data for haemoglobin from the lanceolate flukeDicrocoelium dendriticum. J. molec. Biol.146 (1981) 641–647.

    CAS  PubMed  Google Scholar 

  97. Stahl, H.-D., Crewther, P.E., Anders, R.F., Brown, G.V., Coppel, R.L., Bianco, A.E., Mitchell, G.F., and Kemp, D.J., Interdispersed blocks of repetitive and charged amino acids in a dominant immunogen ofPlasmodium falciparum. Proc. natn. Acad. Sci. USA82 (1985) 543–547.

    CAS  Google Scholar 

  98. Starling, J.A., Allen, B.L., Kaeini, M.R., Payne, D.M., Blytt, H.J., Hofer, H.W., and Harris, B.G., Phosphofructokinase fromAscaris suum. Purification and properties. J. biol. Chem.257 (1982) 3795–3800.

    CAS  PubMed  Google Scholar 

  99. Stuart, K., Kinetoplas DNA, mitochondrial DNA with a difference. Molec. Biochem. Parasitol.9 (1983) 93–104.

    CAS  Google Scholar 

  100. Sugane, K., Irving, D.O., Howell, M.J., and Nicholas, W.L., In vitro translation of mRNA fromToxocara canis larvae. Molec. Biochem. Parasitol.14 (1985) 275–281.

    CAS  Google Scholar 

  101. Suarez de Mata, Z., Zarranz, M.E., Lizardo, R., and Saz, H.J., 2-Methylacetoacetyl-coenzyme A reductase fromAscaris muscle: Purification and properties. Archs. Biochem. Biophys.226 (1983) 84–93.

    CAS  Google Scholar 

  102. Takamiya, S., Furushima, R. and Oya, H., Electron-transfer complexes ofAscaris suum muscle mitochondria. II. Succinate-coenzyme Q reductase (complex II) associated with substrate-reducible cytochromeb-588. Biochim. biophys. Acta848 (1986) 99–107.

    CAS  PubMed  Google Scholar 

  103. Taylor, D.W., Cordingley, J.S., and Butterworth, A.E., Immunoprecipitation of surface antigen precursors fromSchistosoma mansoni messenger RNA in vitro translation products. Molec. Biochem. Parasitol.10 (1984) 305–318.

    CAS  Google Scholar 

  104. Taylor, D.W., Cordingley, J.S., and Butterworth, A.E.,Onchocerca volvulus: Immunoprecipitation of surface antigens and in vitro translation products. Parasitology89 (1984) iii.

    Google Scholar 

  105. Tielens, A.G.M., Van den Heuvel, J.M., and Van den, Bergh, S.G., The energy metabolism ofFasciola hepatica during its development in the final host. Molec. Biochem. Parasitol.13 (1984) 301–307.

    CAS  Google Scholar 

  106. Trager, W., and Jensen, J.B., Human malaria parasites in continuous culture. Science193 (1976) 673–675.

    CAS  PubMed  Google Scholar 

  107. Tuchschmid, P.E., Kunz, P.E., and Wilson, K.J., Isolation and characterization of the hemoglobin from the lanceolate flukeDicrocoelium dendriticum. Eur. J. Biochem.88 (1978) 387–394.

    CAS  PubMed  Google Scholar 

  108. Van der Ploeg, L.H.T., Cornelissen, A.W.C.A., Barry, J.D., and Borst, P., Chromosomes of Kinetoplastida. EMBO J.3 (1984) 3103–3115.

    Google Scholar 

  109. Van der Ploeg, L.H.T., Cornelissen, A.W.C.A., Michels, P.A.M., and Borst, P., Chromosome rearrangements inTrypanosoma brucei, Cell39 (1984) 213–221.

    PubMed  Google Scholar 

  110. Van der Ploeg, L.H.T., Schwartz, D.C., Cantor, C.R., and Borst, P., Antigenic variation inTrypanosoma brucei analyzed by electrophoretic separation of chromosome-sized DNA molecules. Cell37 (1984) 77–84.

    PubMed  Google Scholar 

  111. Vial, H.J., Torpier, G., Ancelin, M.L., and Capron, A., Renewal of the membrane complex ofSchistosoma mansoni is closely associated with lipid metabolism. Molec. Biochem. Parasitol.17 (1985) 203–218.

    CAS  Google Scholar 

  112. Vickerman, K., On the surface coat and flagellar adhesion in trypanosomes. J. Cell Sci.5 (1969) 163–193.

    CAS  PubMed  Google Scholar 

  113. Von Brand, T., Biochemistry and Physiology of Endoparasites. Elsevier North-Holland, Amsterdam 1979.

    Google Scholar 

  114. Wang, C.C., Purine and pyrimidine metabolism inTrichomonadidae andGiardia, in: Molecular Parasitology, pp. 217–230. Ed. J.T. August, Academic Press, New York 1984.

    Google Scholar 

  115. Warren, K.S., and Bowers, J.Z., Parasitology. A global perspective. Springer-Verlag, New York 1983.

    Google Scholar 

  116. Weber, J.L., and Hockmeyer, W.T., Structure of the circumsporozoite protein gene in 18 strains ofPlasmodium falciparum. Molec. Biochem. Parasitol.15 (1985) 305–316.

    CAS  Google Scholar 

  117. Weinbach, E.C., Biochemistry of enteric protozoa. TIBS6 (1981) 254–257.

    CAS  Google Scholar 

  118. Young, J.F., Hockmeyer, W.T., Gross, M., Ballou, W.R., Wirtz, R.A., Trosper, J.H., Beaudoin, R.L., Hollingdale, M.R., Miller, L.H., Diggs, C.L., and Rosenberg, M., Expression ofPlasmodium falciparum circumsporozoite proteins inEscherichia coli for potential use in a human malaria vaccine. Science228 (1985) 958–962.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köhler, P. Progress in molecular parasitology. Experientia 42, 377–386 (1986). https://doi.org/10.1007/BF02118619

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02118619

Key words

Navigation