Skip to main content
Log in

Migratory patterns of clonally related cells in the developing central nervous system

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Neurons and glioblasts that arise in the ventricular zone migrate to form discrete nuclei and laminae as the central nervous system develops. By stably labeling precursor cells in the ventricular zone, pathways taken by different cells within an individual clone can be described. We have used recombinant retroviruses to label precursor cells with a heritable marker, theE. coli lacZ gene; clones of lacZ-positive cells are later mapped histochemically. Here we review results from three regions of the chicken central nervous system — the optic tectum, spinal cord, and forebrain - and compare them with previous results from mammalian cortex and other regions of the vertebrate CNS. In particular, we consider the relationship between migratory patterns and functional organization, the existence of multiple cellular sources of migratory guidance, and the issue of whether a cell's choice of migratory pathway influences its ultimate phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaban, E., Teillet, M.-A., and Le Douarin, N., Application of the quail-chick chimera system to the study of brain development and behavior. Science241 (1988) 1339–1342.

    Article  CAS  PubMed  Google Scholar 

  2. Barber, R. P., Phelps, P. E., and Vaughn, J. E., Generation patterns of spinal sympathetic and parasympathetic neurons in the rat spinal cord. Soc. Neurosci. Abstr.15 (1989) 588.

    Google Scholar 

  3. Benowitz, L., Functional organization of the avian telencephalon, in: Comparative Neurology of the Telencephalon, pp. 389–421. Ed. S. O. E. Ebbesson. Plenum Press, New York 1980.

    Chapter  Google Scholar 

  4. Bourrat, F., and Sotelo, C., Migratory pathways and neuritic differentiation of inferior olivary neurons in the rat embryo. Axonal tracing study using the in vitro slab technique. Dev. Brain Res.39 (1988) 19–37.

    Article  Google Scholar 

  5. Brinkman, R., and Martin, A. H., A cytoarchitectonic study of the spinal cord of the domestic fowlGallus gallus domesticus. I. Brachial region. Brain Res.56 (1973) 43–62.

    CAS  PubMed  Google Scholar 

  6. Bronner-Fraser, M., and Fraser, S., Developmental potential of avian trunk neural crest cells in situ. Neuron3 (1989) 755–766.

    Article  CAS  PubMed  Google Scholar 

  7. Chu-Wang, I.-W., Oppenheim, R. W., and Farel, P. B., Ultrastructure of migrating spinal motoneurons in anuran larvae. Brain Res.213 (1981) 307–318.

    Article  CAS  PubMed  Google Scholar 

  8. Covell, D. A., Jr, and Noden, D. M., Embryonic development of the chick primary trigeminal sensory-motor complex. J. comp. Neurol.286 (1989) 488–503.

    Article  PubMed  Google Scholar 

  9. Domesick, V. B., and Morest, D. K., Migration and differentiation of ganglion cells in the optic tectum of the chick embryo. Neuroscience2 (1977) 459–475.

    Article  CAS  PubMed  Google Scholar 

  10. Fujita, S., Analysis of neuron differentiation in the central nervous system by tritiated thymidine autoradiography. J. comp. Neurol.122 (1964) 311–328.

    Article  CAS  PubMed  Google Scholar 

  11. Galileo, D. S., Gray, G. E., Owens, G. C., Majors, J., and Sanes, J. R., Neurons and glia arise from a common progenitor in chick optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc. natl Acad. Sci. USA87 (1990) 458–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goldberg, S., Studies on the mechanics of development of the visual pathways in the chick embryo. Devl Biol.36 (1974) 24–43.

    Article  CAS  Google Scholar 

  13. Gray, G. E., Glover, J. C., Majors, J., and Sanes, J. R., Radial arrangement of clonally related cells in the chicken optic tectum: Lineage analysis with a recombinant retrovirus. Proc. natl Acad. Sci. USA85 (1988) 7356–7360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gray, G. E., and Sanes, J. R., Migratory patterns of clonally related cells differ in chicken tectum and forebrain. Soc. Neurosci. Abstr.15 (1989) 598.

    Google Scholar 

  15. Gray, G. E., and Sanes, J. R., Migratory pathways and neuronal fates in the chicken optic tectum. Submitted.

  16. Hamburger, V., The mitotic patterns in the spinal cord of the chick embryo and their relation to histogenetic processes. J. comp. Neurol.88 (1948) 221–284.

    Article  CAS  PubMed  Google Scholar 

  17. Hamburger, V., and Hamilton, H., A series of normal stages in the development of the chick embryo. J. Morph.88 (1951) 49–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hatten, M. E., Neuronal regulation of astroglial morphology and proliferation in vitro. J. Cell Biol.100 (1985) 384–396.

    Article  CAS  PubMed  Google Scholar 

  19. Holley, J. A., Early development of the circumferential axional pathway in mouse and chicken spinal cord. J. comp. Neurol.205 (1982) 371–382.

    Article  CAS  PubMed  Google Scholar 

  20. Holley, J. A., Nornes, H. O., and Morita, M., Guidance of neuritic growth in the transverse plane of embryonic mouse spinal cord. J. comp. Neurol.205 (1982) 360–370.

    Article  CAS  PubMed  Google Scholar 

  21. Hollyday, M., and Hamburger, V., An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res.132 (1977) 197–208.

    Article  CAS  PubMed  Google Scholar 

  22. Holt, C. E., Bertsch, T. W., Ellis, H. M., and Harris, W. A., Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron1 (1988) 15–26.

    Article  CAS  PubMed  Google Scholar 

  23. Honig, M. C., and Hume, R. I., Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. Cell Biol.103 (1986) 171–187.

    Article  CAS  PubMed  Google Scholar 

  24. Hubel, D. H., and Wiesel, T. N., Shape and arrangement of columns in cat's striate cortex. J. Physiol., Lond.165 (1963) 559–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huber, J. F., Nerve roots and nuclear groups in the spinal cord of the pigeon. J. comp. Neurol.65 (1936) 43–91.

    Article  Google Scholar 

  26. Jassik-Gerschenfeld, D., and Hardy, O., The avian optic tectum: neurophysiology and behavioral correlations, in: Comparative Anatomy of the Optic Tectum, pp. 649–686. Ed. H. Vanegas. Plenum Press, New York 1984.

    Chapter  Google Scholar 

  27. Kimmel, C. B., and Warga, R. W., Tissue-specific lineages originate in the gastrula of the zebrafish. Science231 (1986) 365–368.

    Article  CAS  PubMed  Google Scholar 

  28. Langman, J., and Haden, C. C., Formation and migration of neuroblasts in the spinal cord of the chick embryo. J. comp. Neurol.138 (1970) 419–432.

    Article  CAS  PubMed  Google Scholar 

  29. Laskowski, M. B., and Sanes, J. R., Topographically selective reinnervation of adult mammalian skeletal muscles. J. Neurosci.8 (1988) 3094–3099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. LaVail, J. H., and Cowan, W. M., The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res.28 (1971) 391–419.

    Article  CAS  PubMed  Google Scholar 

  31. LaVail, J. H., and Cowan, W. M., The development of the chick optic tectum. II. Autoradiographic studies.28 (1971) 421–441.

    CAS  Google Scholar 

  32. Leber, S. M., Breedlove, S. M., and Sanes, J. R., Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. J. Neurosci.10 (1990) 2451–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leber, S. M., and Sanes, J. R., Migration of clonally related cells in the developing chick spinal cord. Soc. Neurosci. Abstr.16 (1990) in press.

  34. Levi-Montalcini, R., The origin and development of the visceral system in the spinal cord of the chick embryo. J. Morph.86 (1950) 253–283.

    Article  Google Scholar 

  35. Liuzzi, F. J., Beattie, M. S., and Bresnahan, J. C., The development of the relationship between dorsal root afferents and motoneurons in the larval bullfrog spinal cord. Brain Res. Bull.14 (1985) 377–392.

    Article  CAS  PubMed  Google Scholar 

  36. Luskin, M. B., Pearlman, A. L., and Sanes, J. R., Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron1 (1988) 635–647.

    Article  CAS  PubMed  Google Scholar 

  37. Luskin, M. B., and Schatz, C. J., Studies of the earliest generated cells of the cat's visual cortex: cogeneration of subplate and marginal zones. J. Neurosci.5 (1985) 1062–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marin-Padilla, M., Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol.152 (1978) 109–126.

    Article  CAS  Google Scholar 

  39. Martin, A. H., A cytoarchitectonic scheme for the spinal cord of the domestic fowl,Gallus gallus domesticus: lumbar region. Acta morph. neerl.-scand.17 (1979) 105–117.

    CAS  Google Scholar 

  40. Matsushita, M., Zur Zytoarchitektonik des Hühnerrückenmarkes nach Silberimprägnation. Acta Anat.70 (1968) 238–259.

    Article  CAS  PubMed  Google Scholar 

  41. McConnell, S. K., Development and decision-making in the mammalian cerebral cortex.13 (1988) 1–23.

    Google Scholar 

  42. McConnell, S. K., Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci.8 (1988) 945–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mission, J. P., Austin, C., Takahashi, T., Cepko, C. and Caviness, V. S. Jr, Migrating neurons of the murine cerebrum ascend in parallel to radial fibers: analysis based upon double-labeling of migrating neurons and radial fibers. Soc. Neurosci. Abstr.15 (1989) 599.

    Google Scholar 

  44. Misson, J.-P., Edwards, M. A., Yamamoto, and Caviness, V. S. Jr, Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Dev. Brain Res.44 (1988) 95–108.

    Article  CAS  Google Scholar 

  45. Moody, S. A., and Heaton, M. B., Ultrastructural observations of the migration and early development of trigeminal motoneurons in chick embryos. J. comp. Neurol.216 (1983) 20–35.

    Article  CAS  PubMed  Google Scholar 

  46. Northcutt, R. G., Evolution of the telencephalon in nonmammals. A. Rev. Neurosci.4 (1981) 301–350.

    Article  CAS  Google Scholar 

  47. Ono, K., and Kawamura, K., Migration of immature neurons along tangentially oriented fibers in the subpial part of the fetal mouse medulla oblongata. Exp. Brain Res.78 (1989) 289–300.

    Article  Google Scholar 

  48. Oppenheim, R. W., Shneiderman, A., Shimizu, I., and Yaginuma, H., Onset and development of intersegmental projections in the chick embryo spinal cord. J. comp. Neurol.275 (1988) 159–180.

    Article  CAS  PubMed  Google Scholar 

  49. Phelps, P. E., Barber, R. P., Brennan, L. A., Maines, V. M., Salvaterra, P. M., and Vaughn, J. E., Embryonic development of four different subsets of cholinergic neurons in rat cervical spinal cord. J. comp. Neurol.291 (1990) 9–26.

    Article  CAS  PubMed  Google Scholar 

  50. Phelps, P. E., Barber, R. P., and Baughn, J. E., Development of cholinergic preganglionic neurons in upper thoracic rat spinal cord. Soc. Neurosci. Abstr.15 (1989) 589.

    Google Scholar 

  51. Price, J., When are neurones specified? Trends Neurosci.12 (1989) 276–278.

    Article  CAS  PubMed  Google Scholar 

  52. Price, J., and Thurlow, L., Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development104 (1988) 473–482.

    Article  CAS  PubMed  Google Scholar 

  53. Price, J., Turner, D., and Cepko, C., Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc. natl Acad. Sci. USA84 (1987) 156–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Puelles, L., and Bendala, M. C., Differentiation of neuroblasts in the chick optic tectum up to eight days of incubation: a golgi study. Neuroscience3 (1978) 307–325.

    Article  CAS  PubMed  Google Scholar 

  55. Puelles, L., and Privat, A., Do oculomotor neuroblasts migrate across the midline in fetal rat brain? Anat. Embryol.150 (1977) 187–206.

    Article  CAS  Google Scholar 

  56. Purves, D., Thompson, W., and Yip, J. W., Reinnervation of ganglia transplanted to the neck from different levels of the guinea-pig sympathetic chain. J. Physiol. (Lond.)313 (1981) 49–63.

    Article  CAS  PubMed  Google Scholar 

  57. Rager, G., and von Oeynhausen, B., Ingrowth and ramification of retinal fibers in the developing optic tectum of the chick embryo. Exp. Brain Res.35 (1979) 213–227.

    Article  CAS  PubMed  Google Scholar 

  58. Rakic, P., Contact regulation of neuronal migration, in: The Cell in Contact. Adhesions and Junctions as Morphogenetic Determinants, pp. 67–91. Eds G. M. Edelman and J.-P. Thiery. John Wiley & Sons, New York 1985.

    Google Scholar 

  59. Rakic, P., Specification of cerebral cortical areas. Science241 (1988) 170–176.

    Article  CAS  PubMed  Google Scholar 

  60. Ramón y Cajal, S., Studies on Vertebrate neurogenesis, C. C. Thomas Springfield, IL, 1960: L. Guth, trans., Études sur la Neurogenèsis de Quelques Vertébrés, 1929.

  61. Rickmann, M., Chronwall, B. M., and Wolff, J. R., On the development of nonpyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat. Embryol.151 (1977) 285–307.

    Article  CAS  Google Scholar 

  62. Sanes, J. R., Analysing cell lineage with a recombinant retrovirus. Trends Neurosci.12 (1989) 21–28.

    Article  CAS  PubMed  Google Scholar 

  63. Sanes, J. R., Rubinstein, J. L. R., and Nicolas, J.-F., Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J.5 (1986) 3133–3142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schmechel, D. E., and Rakic, P., A Golgi study of radial glial cells in developing monkey telencephalon: Morphogenesis and transformation into astrocytes. Anat. Embryol.156 (1979) 115–152.

    Article  CAS  Google Scholar 

  65. Senut, M. C., and Alvarado-Mallart, R. M., Cytodifferentiation of quail tectal primordium transplanted homotopically into the chick embryo. Dev. Brain Res.32 (1987) 187–205.

    Article  Google Scholar 

  66. Sidman, R. L., and Rakic, P., Neuronal migration, with special reference to the developing human brain: a review. Brain Res.62 (1973) 1–35.

    Article  CAS  PubMed  Google Scholar 

  67. Tapscott, S. J., Bennett, G. S., Toyama, Y., Kleinbart, F., and Holtzer, H., Intermediate filament proteins in the developing chick spinal cord. Dev. Biol.86 (1981) 40–54.

    Article  CAS  PubMed  Google Scholar 

  68. Tombol, T., Comparative study of the early postnatal chicken and pigeon brain. A Golgi-study of telencephalon and cerebellum. J. Hirnforsch.29 (1988) 557–567.

    CAS  PubMed  Google Scholar 

  69. Tsai, H. M., Garber, B. B., and Larramendi, L. M. H.,3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartmentsin situ. J. comp. Neurol.198 (1981) 275–292.

    Article  CAS  PubMed  Google Scholar 

  70. Tsai, H. M., Garber, B. B., and Larramendi, L. M. H.,3H-thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: II. Dynamics of neuronal migration, displacement, and aggregation. J. comp. Neurol.198 (1981) 293–306.

    Article  CAS  PubMed  Google Scholar 

  71. Turner, D. L., and Cepko, C. L., A common progenitor for neurons and glia persists in rat retina late in development. Nature328 (1987) 131–136.

    Article  CAS  PubMed  Google Scholar 

  72. Vanselow, J., Thanos, S., Godement, P., Henke-Fahle, S., and Bonhoeffer, F., Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Dev. Brain Res.45 (1989) 15–27.

    Article  CAS  Google Scholar 

  73. Walsh, C., and Cepko, C. L., Clonally related cortical cells show several migration patterns. Science241 (1988) 1342–1345.

    Article  CAS  PubMed  Google Scholar 

  74. Wetts, R., and Fraser, S. E., Multipotent precursors can give rise to all major cell types of the frog retina. Science239 (1988) 1142–1145.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, G.E., Leber, S.M. & Sanes, J.R. Migratory patterns of clonally related cells in the developing central nervous system. Experientia 46, 929–940 (1990). https://doi.org/10.1007/BF01939386

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01939386

Key words

Navigation