Skip to main content
Log in

One-dimensional nonlinear motions in electroelastic solids: Characteristics and shock waves

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The general balance laws and jump relations of the nonlinear electroelasticity of anisotropic dielectrics presented in a previous work are systematically used to characterize and classify infinitesimal discontinuities and electroelastic shocks that can propagate in a simplified one-dimensional model. In particular, the characteristic speeds are obtained, the thermodynamical behavior of weak electroelastic shocks is established, and a classification of electroelastic shocks is given when the material admits a quadratic energy (so-called neo-Hookean case). The Hugoniot jump equation plays the fundamental role in the second point while electric switch-on and switch-off shocks can be exhibited in the classification. The work paves the way for a fully three-dimensional study in anisotropic ferroelectrics and ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Maugin and W. Ani,Relation d'Hugoniot pour un diélectrique déformable dans l'approximation galiléenne. C. R. Acad. Sci. Paris,II-301, 515–518 (1985).

    Google Scholar 

  2. W. Ani and G. A. Maugin,Basic equations for shocks in nonlinear electroelastic materials. J. Acoust. Soc. Amer. (in print).

  3. J. L. Grindlay,An Introduction to the Phenomenological Theory of Ferroelectricity. Pergamon, Oxford 1970.

    Google Scholar 

  4. M. E. Lines and A. M. Glass,Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press, London 1971.

    Google Scholar 

  5. G. A. Maugin, B. Collet and J. Pouget,Nonlinear wave propagation in coupled electro-mechanical systems. In: Nonlinear wave propagation in mechanics, ed. T. W. Wright, pp. 57–84 Vol. AMD-77, A.S.M.E., New York 1986.

    Google Scholar 

  6. D. R. Bland,Nonlinear Dynamic Elasticity. Blaisdell, Waltham, Mass. (1969).

    Google Scholar 

  7. G. Duvaut,Sur les ondes de choc longitudinales dans les milieux élastiques non linéaires. J. Mécanique6, 371–404 (1967).

    Google Scholar 

  8. J. Bazer and W. B. Ericson,Nonlinear wave motions in magnetoelasticity. Arch. Rat. Mech. Anal.55, 124–192 (1974).

    Google Scholar 

  9. G. A. Maugin,Wave motion in magnetizable deformable solids. Int. J. Engng. Sci.19, 321–388 (1981).

    Google Scholar 

  10. R. A. Graham,Strain dependence of longitudinal piezoelectric, elastic and dielectric constants of X-cut quartz. Phys. Rev.B6, 4779–4792 (1972).

    Google Scholar 

  11. R. N. Thurston,Waves in Solids. In: Handbuch der Physik, Vol. VI.a.4, pp. 221–323, ed. S. Flügge, Springer-Verlag, Berlin, Heidelberg, New York 1974.

    Google Scholar 

  12. P. C. Lysne and L. C. Bartel,Electromechanical response of PZT 65/35 subjected to axial shock loading. J. Appl. Phys.46, 222–229 (1975).

    Google Scholar 

  13. G. A. Maugin, B. Collet and J. Pouget,Electromechanical waves in ceramics-numerical simulations. Appl. Math. Mech.6, 1123–1139 (1985).

    Google Scholar 

  14. R. Courant and K. O. Friedrichs,Supersonic Flow and Shock Waves. Interscience, New York 1948.

    Google Scholar 

  15. P. D. Lax, Hyperbolic systems of conservation laws. Commun. Pure Appl. Math.10, 537–566 (1957).

    Google Scholar 

  16. G. A. Maugin,Nonlinear Electromechanical Effects and Applications — a Series of Lectures. World Scientific, Singapore 1985.

    Google Scholar 

  17. E. Dieulesaint and D. Royer,Elastic Waves in Solids: Application to Signal Processing. J. Wiley, New York 1980.

    Google Scholar 

  18. A. Jeffrey and T. Taniuti,Nonlinear Wave Propagation. Academic Press, New York 1964.

    Google Scholar 

  19. E. Jouguet,Sur la variation d'entropie dans les ondes de choc des solides élastiques. C. R. Acad. Sci. Paris171, 789–792 (1920).

    Google Scholar 

  20. D. H. McMahon,Acoustic second-harmonic generation in piezoelectric crystals. J. Acoust. Soc. Amer.44, 1007 (1968).

    Google Scholar 

  21. M. A. Breazeale and P. J. Latimer,Nonlinear behavior of quartz and LiNbO 3. In: The Mechanical Behavior of Electromagnetic Solid Continua, ed. G. A. Maugin, pp. 67–72, North-Holland, Amsterdam 1984.

    Google Scholar 

  22. P. J. Chen and M. F. McCarthy,One-dimensional shock waves in elastic dielectrics. Ist. Lombardo Sci. Rend.107, 715–727 (1974).

    Google Scholar 

  23. P. J. Chen and M. F. McCarthy,Thermodynamic influences on the behavior of one-dimensional shock waves in elastic dielectrics. Int. J. Solids Struct.10, 1229–1442 (1974).

    Google Scholar 

  24. B. Collet,On the behavior of shock waves in deformable dielectric materials. Int. J. Engng. Sci.21, 1145–1155 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ani, W., Maugin, G.A. One-dimensional nonlinear motions in electroelastic solids: Characteristics and shock waves. Z. angew. Math. Phys. 39, 277–298 (1988). https://doi.org/10.1007/BF00945051

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00945051

Keywords

Navigation