Skip to main content
Log in

Finite element calculations of flow past a spherical bubble rising on the axis of a cylindrical tube

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

The velocity and pressure fields of a Newtonian fluid with homogeneous and constant physical properties flowing around a sphere on the axis of a cylindrical tube with no slip, free slip and partial slip at the sphere surface and no slip at the cylinder wall have been calculated by solving the Navier-Stokes equations and the continuity equation using the finite element technique with the penalty function method. Terminal rise velocities of spherical air bubbles in water have been calculated as function of the bubble radius and some conclusions have been drawn about the nature of the interface. Finally, the influence of the presence of a cylindrical wall on the drag force has been determined and a new empirical equation is derived for the wall correction factor for a sphere rising with free slip at its surface at low Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G. K.,An Introduction to Fluid Dynamics, University Press, Cambridge 1992.

    Google Scholar 

  2. Clift, R., Grace, J. R. and Weber, M. E.,Bubbles, Drops and Particles, Academic Press, Inc., London 1978.

    Google Scholar 

  3. Cuvelier, C., Segal, A. and van Steenhoven, A. A.,Finite element methods and Navier-Stokes equations, D. Reidel Publishing Company, Dordrecht 1986.

    Google Scholar 

  4. Dandy, D. S. and Leal, L. G.,Buoyancy-driven motion of a deformable drop through a quiescent liquid at intermediate Reynolds numbers, J. Fluid Mech.,208, 161–192 (1989).

    Google Scholar 

  5. Frumkin, A. and Levich, V. G.,Effect of surface-active substances on movements at the boundaries of liquid phases, Zh. Fiz. Kim.,21, 1183–1204 (1947).

    Google Scholar 

  6. Graham, A. L., Mondy, L. A., Miller, J. D., Wagner, N. J. and Cook, W. A.,Numerical simulations of eccentricity and end effects in falling ball rheometry, J. Rheol.,33, 1107–1128 (1989).

    Google Scholar 

  7. Haas, U. H., Schmidt-Traub, H. and Brauer, H.,Umströmung kugelförmiger Blasen mit innerer Zirkulation, Chem. Ing. Tech.,44, no. 18, 1060–1068 (1972).

    Google Scholar 

  8. Haberman, W. L. and Morton, R. K.,An experimental study of bubbles moving in liquids, Proc. Am. Soc. Civil Engrs,80, separ. 387 (1954).

    Google Scholar 

  9. Haberman, W. L. and Sayre, R. M., David Taylor Model Basin,Report No. 1143, Washington, D.C., U.S. Navy Dept (1958).

  10. Hamielec, A. E., Huffman, T. W. and Ross, L. L.,Numerical solution of the Navier-Stokes equation for flow past spheres: Part I. Viscous flow around spheres with and without radial mass efflux, A.I.Ch.E.J.,13, no. 2, 212–219 (1967).

    Google Scholar 

  11. Hamielec, A. E., Johnson, A. I. and Houghton, W. T.,Numerical solution of the Navier-Stokes equation for flow past spheres: Part II. Viscous flow around circulating spheres of low viscosity, A.I.Ch.E.J.,13, no. 2, 220–224 (1967).

    Google Scholar 

  12. Happel, J. and Brenner, H.,Low Reynolds number hydrodynamics, 4th ed., Martinus Nijhoff Publishers, Dordrecht 1986.

    Google Scholar 

  13. Hoefer, K.,Untersuchungen über die Strömungsvorgänge im Steigrohr eines Druckluftwasserhebers, Z. Ver. Deut. Ing.,57, no. 30, 1174–1182 (1913).

    Google Scholar 

  14. Ihme, F., Schmidt-Traub, H. and Brauer, H.,Theoretische Untersuchung über die Umströmung und den Stoffübergang an Kugeln, Chem. Ing. Tech.,44, no. 5, 306–313 (1972).

    Google Scholar 

  15. Martinez, M. J. and Udell, K. S.,Axisymmetric creeping motion of drops through circular tubes, J. Fluid. Mech.,210, 565–591 (1990).

    Google Scholar 

  16. Oliver, D. L. R. and Chung, J. N.,Steady flow inside and around a fluid sphere at low Reynolds numbers, J. Fluid. Mech.,154, 215–230 (1985).

    Google Scholar 

  17. Ryskin, G. and Leal, L. G.,Numerical solution of free-boundary problems in fluid mechanics. Part 1. The finite-difference technique, J. Fluid Mech.,148, 1–17 (1984).

    Google Scholar 

  18. Ryskin, G. and Leal, L. G.,Numerical solution of free-boundary problems in fluid mechanics. Part 2. Buoyancy-driven motion of a gas bubble through a quiescent liquid, J. Fluid Mech.,148, 19–35 (1984).

    Google Scholar 

  19. Ryskin, G. and Leal, L. G.,Numerical solution of free-boundary problems in fluid mechanics. Part 3. Bubble deformation in an axisymmetric straining flow, J. Fluid Mech.,148, 37–43 (1984).

    Google Scholar 

  20. Tsukada, T., Hozawa, M., Imaishi, N. and Fujinawa, K.,Computer simulations of deformation of moving drops and bubbles by use of the finite element method, J. Chem. Eng. Japan,17, no. 3, 246–251 (1984).

    Google Scholar 

  21. Tullock, D. L., Phan-Thien, N. and Graham, A. L.,Boundary element simulations of spheres settling in circular, square and triangular conduits, Rheol. Acta,31, 139–150 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartholt, G.P., Hoffmann, A.C., Janssen, L.P.B.M. et al. Finite element calculations of flow past a spherical bubble rising on the axis of a cylindrical tube. Z. angew. Math. Phys. 45, 733–745 (1994). https://doi.org/10.1007/BF00942750

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00942750

Keywords

Navigation