Skip to main content
Log in

Variable-range hopping conduction in doped germanium at very low temperatures and high magnetic fields

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The conductivity of doped Ge below the metal-insulator transition is measured at temperatures between 4 K and 40 mK and in magnetic fields up to 7 Tesla. In zero field the resistivity exponent diverges asT −1/2. In weak fields the magnetoresistance increases asB 2 and becomes exponentially large in strong fields and at low temperatures. The results can be described quantitatively in terms of variable-range hopping between localized states having a Coulomb gap in the density of states at the Fermi level. The magnetoresistance is calculated for arbitrary fields by means of a quasi-classical method. A fit to the data gives the radius of the localized states and the density of states. The sample is found to be very close to the metal-insulator transition. A small increase of the binding energy is observed in strong fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For an excellent recent review see Shklovskii, B.L., Efros, A.L.: Electronic properties of doped semiconductors. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  2. Shlimak, I.S., Ionov, A.N., Shklovskii, B.I.: Fiz. Tekh. Poluprov.17, 503 (1983) [English transl.: Sov. Phys.-Semicond.17, 314 (1983)]

    Google Scholar 

  3. Ionov, A.N., Shlimak, I.S., Matveev, M.N.: Solid State Commun.47, 763 (1983)

    Google Scholar 

  4. Abboudy, S., Mansfield, R., Fozooni, P.: High magnetic fields in semiconductor physics. Landwehr, G. (ed.), pp. 518. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  5. Biskupski, G., Dubois, H., Laborde, O.: Application of high magnetic fields in semiconductor physics. Landwehr, G. (ed.). Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  6. Gershenzon, E.M., Il'in, V.A., Litvak-Gorskaya, L.B.: Fiz. Tekh. Popuprov.8, 295 (1974) [English transl.: Sov. Phys.-Semicond.8, 189 (1974)]

    Google Scholar 

  7. Tokumoto, H., Mansfield, R., Lea, M.J.: Phil. Mag. B46, 93 (1982)

    Google Scholar 

  8. Ettlinger, E., Schoepe, W., Monkenbusch, M., Wieners, G.: Solid State Commun.49, 107 (1984)

    Google Scholar 

  9. Ettlinger, E., Ose, W., Schoepe, W.: Mol. Cryst. Liq. Cryst.117, 173 (1985)

    Google Scholar 

  10. Kücher, A.: Diploma thesis, Universität Regensburg 1986: (unpublished)

  11. Shklovskii, B.I.: Zh. Eksp. Theor. Fiz. Pis. Red.36, 43 (1982) [English transl.: Sov. Phys.-JETP Lett.36, 51 (1982)

    Google Scholar 

  12. Shklovskii, B.I.: Fiz. Tekh. Poliprov.17, 2055 (1983) [English transl.: Sov. Phys.-Semicond.17, 1311 (1983)]

    Google Scholar 

  13. Scientific Instruments, Inc., 1101 25th Street, West Palm Beach, Fla. 33407, USA: model 4S-3He

  14. Schoepe, W., Uhlig, K.: (to be published)

  15. The calibration was performed by K. Uhlig at the Walther-Meissner Institute, Garching

  16. Thanks are due to K. Neumaier and P. Gutsmiedl at the Walther-Meissner Institute, Garching, for the loan of the carbon resistor

  17. Lerbet, F., Bellessa, G.: Cryogenics26, 694 (1986)

    Google Scholar 

  18. Koike, Y., Fukase, T., Morita, S., Okamura, M., Mikoshiba, N.: Cryogenics25, 499 (1985)

    Google Scholar 

  19. For a discussion of the numerical factors see Appendix 1

  20. Ioselevich, A.S.: Fiz. Tekh. Poluprov.15, 2373 (1981) [English transl.: Sov. Phys.-Semicond.15, 1378 (1981)]

    Google Scholar 

  21. Shklovskii, B.I., Nguen Van Lien: Fiz. Tekh. Poluprov.12, 1346 (1978) [English transl.: Sov. Phys.-Semicond.12, 796 (1978)]

    Google Scholar 

  22. Chroboczek, J.A., Sladek, R.J.: Phys. Rev.151, 595 (1966)

    Google Scholar 

  23. Rosenbaum, T.F., Milligan, R.F., Paalanen, M.A., Thomas, G.A., Bhatt, R.N.: Phys. Rev. B27, 7509 (1983)

    Google Scholar 

  24. Towards higher temperatures the data in Fig. 6 actually leave the strong field limit, though this is not visible in the figure

  25. The binding energy of a single donor in a magnetic field is discussed in [1] and the references cited therein; for a detailed calculation see, e.g., Larsen, D.M.: J. Phys. Chem. Solids29, 271 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoepe, W. Variable-range hopping conduction in doped germanium at very low temperatures and high magnetic fields. Z. Physik B - Condensed Matter 71, 455–463 (1988). https://doi.org/10.1007/BF01313932

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313932

Keywords

Navigation