Skip to main content
Log in

Spin lattice relaxation rates of tunnelling CD3 groups

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The spin lattice relaxation rates of deuterated methyl groups are calculated for threefold and sixfold potentials. It is shown that it should be possible to determine the symmetry of the potential hindering the methyl groups from deuteron spin lattice relaxation experiments. The temperature dependence of the spin lattice relaxation rates is discussed using a simple model. The similarities and the differences between proton NMR and deuteron NMR are pointed out. The main difference is thatEa↔Eb transitions are forbidden by spin selection rules in case of CH3, but not for CD3. Therefore, and due to the fact that the quadrupolar interaction is a single particle interaction, deuteron NMR allows the study of the rotational dynamics of single methyl groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hüller, A.: Z. Phys. B-Condensed Matter36, 215 (1980)

    Google Scholar 

  2. Hewson, A.C.: J. Phys. C15, 3841, 3855 (1982)

    Google Scholar 

  3. Whittall, M.W.G., Gehring, G.A.: J. Phys. C20, 1619 (1987)

    Google Scholar 

  4. Clough, S., Heidemann, A., Horsewill, A.J., Lewis, J.D., Paley, M.N.J.: J. Phys. C15, 2495 (1982)

    Google Scholar 

  5. Würger, A.: Z. Phys. B-Condensed Matter76, 65 (1989)

    Google Scholar 

  6. Press, W.: Single particle rotations in molecular crystals. In: Springer Tracts in Modern Physics. Höhler, G. (ed.), Vol. 92. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  7. Matuschek, D.W., Hüller, A.: Can. J. Chem.66, 495 (1988)

    Google Scholar 

  8. Haupt, J.: Z. Naturforsch. A26, 1578 (1971)

    Google Scholar 

  9. Clough, S.: J. Phys. C4, 2180 (1971)

    Google Scholar 

  10. Müller-Warmuth, W., Schüler, R., Prager, M., Kollmar, A.: J. Magn. Res.34, 83 (1979)

    Google Scholar 

  11. Clough, S., Heidemann, A., Horsewill, A.J., Lewis, J.D., Paley, M.N.J.: J. Phys. C14, L525 (1981)

    Google Scholar 

  12. Cavagnat, D., Magerl, A., Vettier, C., Clough, S.: J. Phys. C19, 6665 (1986)

    Google Scholar 

  13. Cavagnat, D., Clough, S., Zelaya, Z.O.: J. Phys. C18, 6457 (1985)

    Google Scholar 

  14. Lalowicz, Z.T., Werner, U., Müller-Warmuth, W.: Z. Naturforsch.43a, 219 (1988)

    Google Scholar 

  15. Yasuda, H., Raich, J.C.: Mol. Phys.47, 647 (1982)

    Google Scholar 

  16. Clough, S., McDonald, P.J.: J. Phys. C16, 5753 (1983)

    Google Scholar 

  17. Tinkham, M.: Group theory and quantum mechanics. New York: McGraw-Hill 1864

    Google Scholar 

  18. Sprik, M., Trappeniers, N.J.: Physica103A, 411 (1980)

    Google Scholar 

  19. Hüller, A., Baetz, L.: Z. Phys. B-Condensed Matter72, 47 (1988)

    Google Scholar 

  20. Emid, S.: Chem. Phys. Lett.72, 189 (1980)

    Google Scholar 

  21. Spiess, H.W.: Rotation of molecules and nuclear spin relaxation. In: NMR: Basic Principles and Progress. Diehl, P., Fluck, E., Kosfeld, R. (eds.), Vol. 15. Berlin, Heidelberg, New York: Springer 1978

    Google Scholar 

  22. Bowden, G.J., Hutchinson, W.D.: J. Magn. Res.67, 403 (1986)

    Google Scholar 

  23. Dirl, R., Kasperkovitz, P.: Gruppentheorie. Braunschweig: Vieweg 1977

    Google Scholar 

  24. Harter, W.G., Patterson, C.W., de Paxao, F.J.: Rev. Mod. Phys.50, 37 (1978)

    Google Scholar 

  25. Nijman, A.J.: Thesis, University of Amsterdam 1977

  26. van der Putten, D., Trappeniers, N.J.: Physica129A, 302 (1985)

    Google Scholar 

  27. Messiah, A.: Quantum mechanics. Amsterdam: North Holland 1965

    Google Scholar 

  28. Okada, K., Ozaki, Y., Maki, K.: Can. J. Chem.66, 676 (1988)

    Google Scholar 

  29. Heidemann, A., Friedrich, H., Günther, E., Häusler, W.: Z. Phys. B-Condensed Matter76, 335 (1989)

    Google Scholar 

  30. Nijman, A.J., Berlinsky, A.J.: Can. J. Phys.58, 1049 (1980)

    Google Scholar 

  31. Jeener, J.: Adv. Magn. Res.3, 205 (1968)

    Google Scholar 

  32. Diezemann, G., Schirmacher, W.: J. Phys. Condens. Matter2, 6681 (1990)

    Google Scholar 

  33. Hüller, A.: Private communication

  34. Torchia, D.A., Szabo, A.: J. Magn. Res.49, 107 (1982)

    Google Scholar 

  35. Rigny, P.: Physica59, 707 (1972)

    Google Scholar 

  36. Heidemann, A., Prager, M., Monkenbusch, M.: Z. Phys. B-Condensed Matter76, 77 (1989)

    Google Scholar 

  37. Clough, S., Heidemann, A.: J. Phys. C12, 761 (1979)

    Google Scholar 

  38. Würger, A., Heidemann, A.: Z. Phys. B-Condensed Matter80, 113 (1990)

    Google Scholar 

  39. Würger, A., Hüller, A.: Z. Phys. B-Condensed Matter78, 479 (1990)

    Google Scholar 

  40. Prager, M., Stanislawski, J., Häusler, W.: J. Chem. Phys.86, 2563 (1987)

    Google Scholar 

  41. Ohms, U., Treutmann, W., Dannohl, H., Schweig, A., Hegar, G.: J. Chem. Phys.83, 273 (1985)

    Google Scholar 

  42. Fillaux, F., Carlile, C.J.: Chem. Phys. Lett.162, 188 (1989)

    Google Scholar 

  43. Bee, M.: Quasielastic neutron scattering. Bristol, Philadelphia: Hilger 1988

    Google Scholar 

  44. Fujara, F., Petry, W., Schnauss, W., Sillescu, H.: J. Chem. Phys.89, 1801 (1988)

    Google Scholar 

  45. Emid, S., Wind, R.A.: Chem. Phys. Lett.33, 269 (1975)

    Google Scholar 

  46. Emid, S., Baarda, R.J., Smidt, J., Wind, R.A.: Physica93B, 327 (1978)

    Google Scholar 

  47. Schnauss, W., Fujara, F., Hartmann, K., Sillescu, H.: Chem. Phys. Lett.166, 381 (1990)

    Google Scholar 

  48. van der Putten, D., Diezemann, G., Hartmann, K., Fujara, F., Sillescu, H.: (to be published)

  49. Cornwell, J.F.: Group theory in physics, Vol. I. New York: Academic Press 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diezemann, G., Sillescu, H. & van der Putten, D. Spin lattice relaxation rates of tunnelling CD3 groups. Z. Physik B - Condensed Matter 83, 245–257 (1991). https://doi.org/10.1007/BF01309425

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309425

Keywords

Navigation