Skip to main content
Log in

Ab initio investigation of the stability of Si3C3 clusters and their structural and bonding features

  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

Various structural possibilities for Si3C3 clusters are investigated by ab initio calculations employing basis sets of double- and triple-zeta quality augmented by d polarization functions. Correlation effects are included by a second-order Moeller Plesset perturbation treatment. For the two lowest-lying structures higher-order correlation corrections and multi-reference effects are also included. Bonding features are investigated by two different types of population analyses to obtain insight into the nature of chemical bonding. A total of 17 stationary points were investigated, 14 of which correspond to local minima and three being transition states. The energetically lowest-lying structures are: A “pyramidlike” structure with various multicenter bonds, followed by a Cs symmetric isomer closely related to the ground state Si6 structure. Planar structures, favoured in small carbon clusters, lie higher in energy and are transition states. The lowest-lying triplet system is found to be the linear nonsymmetric Si-C-C-C-Si-Si structure, which is calculated to lie about 38 kcal/mole above the singlet ground state. A building-up principle based on bonding criteria is suggested for the occurence of the various structural possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parasuk, V., Almlöf, J.: J. Chem. Phys.94, 8172 (1991)

    Google Scholar 

  2. Bernholdt, D.E., Magers, D.H., Bartlett, R.J.: J. Chem. Phys.89, 3612 (1988)

    Google Scholar 

  3. Martin, J.M.L., Francoise, J.P., Gijbels, R.: J. Chem. Phys.94, 3753 (1991)

    Google Scholar 

  4. Raghavachari, K., Binkley, J.S.: J. Chem. Phys.84, 2191 (1987)

    Google Scholar 

  5. Martin, J.M.L., Francoise, J.P., Gijbels, R.: J. Comp. Chem.12, 52 (1991)

    Google Scholar 

  6. Parasuk, V., Almlöf, J.: J. Chem. Phys.91, 1137 (1989)

    Google Scholar 

  7. Ragavashari, K., Whiteside, R.A., Pople, J.A.: J. Chem. Phys.85, 6623 (1986)

    Google Scholar 

  8. Weltner Jr., W., Van Zee, R.J.: Chem. Rev.89, 1714 (1989)

    Google Scholar 

  9. Anderson, L.R., Maruyama, S., Smalley, R.E.: Chem. Phys. Lett.176, 348 (1991)

    Google Scholar 

  10. Raghavachari, K.: In: Phase transitions, Vols. 24–26, pp. 61–69 (1990)

    Google Scholar 

  11. Raghavachari, K., Rohlfing, C.: J. Chem. Phys.94, 3670 (1991)

    Google Scholar 

  12. Raghavachari, K., Rohlfing, C.: Chem. Phys. Lett.167, 559 (1990)

    Google Scholar 

  13. Raghavachari, K.: J. Chem. Phys.84, 5672 (1986)

    Google Scholar 

  14. Presilla-Marquez, J.D., Graham, W.R.M.: J. Chem. Phys.96, 6509 (1992)

    Google Scholar 

  15. Rittby, C.M.L.: J. Chem. Phys.96, 6768 (1992)

    Google Scholar 

  16. Trucks, G.W., Bartlett, J.R.: J. Mol. Struct. (Theochem)135, 423 (1986)

    Google Scholar 

  17. Sudhakar, V., Günner, O.F., Lammertsma, K.: J. Phys. Chem.93, 7289 (1989)

    Google Scholar 

  18. Lammertsma, K., Günner, O.F.: J. Am. Chem. Soc.110, 5239 (1988)

    Google Scholar 

  19. Huzinaga, S., Sakai, Y.: J. Chem. Phys.50, 1371 (1969); Dunning Jr., T.H., Hay, P.J.: Modern theoretical chemistry, Vol. 3, Chap. 1. Schaefer III, H.F. (ed.). New York: Plenum Press 1977

    Google Scholar 

  20. Hehre, W.J., Radom, L., Schleyer, P.v.R., Pople, J.A.: Ab inito molecular orbital theory. New York: Wiley 1985

    Google Scholar 

  21. Ahlrichs, R., Bär, M., Häser, M., Horn, H.: Chem. Phys. Lett.162, 165 (1989)

    Google Scholar 

  22. Häser, M., Ahlrichs, R.: J. Comput. Chem.10, 104 (1989)

    Google Scholar 

  23. Woon, D.E., Dunning Jr., T.H., Harrison, R.J.: J. Chem. Phys.96, 6796 (1992)

    Google Scholar 

  24. Dunning Jr., T.H.: J. Chem. Phys.90, 1007 (1989)

    Google Scholar 

  25. Anderson, K., Malmqvist, R.Å., Roos, B.O., Sadlej, A.J., Wolinski, K.: J. Phys. Chem.94, 5483 (1990)

    Google Scholar 

  26. Anderson, K., Malmqvist, R.Å., Roos, B.O.: J. Chem. Phys.96, 1218 (1992)

    Google Scholar 

  27. Mulliken, R.S.: J. Chem. Phys.23, 1833 (1955)

    Google Scholar 

  28. Davidson, E.R.: J. Chem. Phys.46, 3320 (1967)

    Google Scholar 

  29. Heinzmann, R., Ahlrichs, R.: Theor. Chim. Acta42, 33 (1976)

    Google Scholar 

  30. Roby, K.R.: Mol. Phys.27, 81 (1974)

    Google Scholar 

  31. Ehrhardt, C., Ahlrichs, R.: Theor. Chim. Acta168, 231 (1985)

    Google Scholar 

  32. Mühlhäuser, M., Froudakis, G., Zdetsis, A., Peyerimhoff, S.D.: Chem. Phys. Lett.204, 617 (1993)

    Google Scholar 

  33. Grev, R.S., Schaefer III, H.F.: J. Chem. Phys.82, 4126 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlhäuser, M., Froudakis, G., Zdetsis, A. et al. Ab initio investigation of the stability of Si3C3 clusters and their structural and bonding features. Z Phys D - Atoms, Molecules and Clusters 32, 113–123 (1994). https://doi.org/10.1007/BF01425931

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01425931

PACS

Navigation