Skip to main content
Log in

Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

In contrast to bifunctional reagents such as glutaraldehyde or polyfunctional reagents such as polyepoxides, carbodiimides belong to the class of zero-length crosslinkers which modify amino acid side-groups to permit crosslink formation, but do not remain as part of that linkage. The authors have compared the effects of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and glutaraldehyde (the de facto industrial standard crosslinker) on the hydrothermal, biochemical, and uniaxial mechanical properties of bovine pericardium. EDC crosslinking was optimized for maximum increase in collagen denaturation temperature using variables of pH, concentration, and ratio of EDC to N-hydroxysuccinimide (NHS): a reagent for formation of activated esters. EDC and glutaraldehyde crosslinked materials were subjected to hydrothermal denaturation tests, biochemical degradation by enzymes (collagenase, trypsin) and CNBr, amino acid analysis for unreacted lysine, and to high strain rate mechanical tests including: large deformation stress-strain studies (0.1 to 10 Hz), stress relaxation experiments (loading time 0.1 s) and small deformation forced vibration (1 and 10 Hz). A protocol for EDC crosslinking was developed which used 1.15% EDC (2:1 EDC:NHS) at pH 5.5 for 24 h. The increase in denaturation temperature for EDC (from 69.7±1.2°C to 86.0±0.3°C) was equivalent to that produced by glutaraldehyde (85.3±0.4°C). Both treatments equivalently increased resistance to collagenase and CNBr degradation; however, after denaturation, the EDC-treated tissue was slightly more resistant to collagenase, and markedly more resistant to trypsin. EDC-treated materials were more extensible and more elastic than glutaraldehyde-treated materials. Despite the differences in crosslinking mechanism, EDC and glutaraldehyde-treated materials are very similar. Subtle but intriguing differences in biochemical structure remain to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. H. OLDE DAMINK, Ph D thesis, University of Twente (1993).

  2. P. B.Van, Wachem, M. J.Van, Luyn, L. H., Olde Damink, P. J., Dijkstra, J., Feijen and P., Nieuwenhuis, J. Biomed. Mater. Res. 28 (1994) 353–363.

    Google Scholar 

  3. P. B.Van, Wachem, M. J.Van, Luyn, L. H., Olde Damink, P. J., Dijkstra, J., Feijen and P., Nieuwenhuis, Int. J. Artif. Org. 17 (1994) 230–239.

    Google Scholar 

  4. W. A., Naimark, C. A., Pereira, K., Tsang and J. M., Lee, J. Mater. Sci. Mater. Med. 6 (1995) 235–241.

    Google Scholar 

  5. B. K. MILTHORPE, K. TRUE, L. SUN and K. SCHINDHELM (Abstract) Proceedings of 9th European Conference on Biomaterials (1991) p. 111.

  6. M., Masuoka and M., Nakamura, Leather Chem. Jpn. 30 (1985) 223–232.

    Google Scholar 

  7. C. A., Pereira, J. M., Lee and S. A., Haberer, J. Biomed. Mater. Res. 24 (1990) 345–361.

    Google Scholar 

  8. R., Tu, C.-L., Lu, K., Thyagarajan, E., Wang, H., Nguyen, S., Shen, C., Hata and R. C., Quijano, J. Biomed. Mater. Res. 27 (1993) 3–9.

    Google Scholar 

  9. J. M., Lee, L. W. K., Kan and C. A., Pereira, J. Biomed. Mater. Res. 28 (1994) 981–992.

    Google Scholar 

  10. K., Weadock, R. M., Olsen and F. H., Silver, Biomater. Med. Dev. Artif. Organs 11 (1983–4) 293–318.

    Google Scholar 

  11. M. G., Dunn, P. N., Avasarala and J. P., Zawadsky, J. Biomed. Mater. Res. 27 (1993) 1545–1552.

    Google Scholar 

  12. Y. P., Kato, D. L., Christiansen, R., Hahn, S-J., Shieh, J. D., Goldstein and F. H., Silver, Biomaterials 10 (1989) 38–42.

    Google Scholar 

  13. H., Petite, V., Frei, A., Huc and D., Herbage, J. Biomed. Mater. Res. 28 (1994) 159–165.

    Google Scholar 

  14. H., Petite, I., Rault, A., Huc, P. H., Hemasche and D., Herbage, J. Biomed. Mater. Res. 24 (1990) 179–187.

    Google Scholar 

  15. D. M., Simmons and J. N., Kearney, Biotech. Appl. Biochem. 17 (Pt 1) (1993) 23–29.

    Google Scholar 

  16. M. A., Moore, I. K., Bohachevsky, D. T., Cheung, B. D., Boyan, W. M., Chen, R. R., Bickers and B. K., Mcllroy, J. Biomed. Mater. Res. 28 (1994) 611–618.

    Google Scholar 

  17. J. A., Ramshaw, L. J., Stephens and P. A., Tulloch, Biochim. Biophys. Acta. 1206 (1994) 225–230.

    Google Scholar 

  18. S. S., Wong, “Chemistry of protein conjugation and crosslinking” (CRC Press, Boca Raton, FL 1991) pp. 1–133.

    Google Scholar 

  19. G. W., Anderson, G. W., Zimmerman and F. M., Callahan, J. Amer. Chem. Soc. 86 (1964) 1839–1842.

    Google Scholar 

  20. D., Sehgal and I. K., Vijay, Anal. Biochem. 218 (1994) 87–91.

    Google Scholar 

  21. M. K., Jenkins and R. H., Schwartz, J. Exper. Med. 165 (1987) 302–319.

    Google Scholar 

  22. M. R., Mauk and A. G., Mauk, Eur. J. Biochem. 186 (1989) 473–486.

    Google Scholar 

  23. P., Thelen and B., Deuticke, Biochim. Biophys. Acta. 944 (1988) 297–307.

    Google Scholar 

  24. K., Raghunath, G., Biswas, K., Panduranga Rao, K. T., Joseph and M., Chvapil, J. Biomed. Mater. Res. 17 (1983) 613–621.

    Google Scholar 

  25. F., Senatore, H., Shankar, J. H., Chen, S., Avantsa, M., Feola, R., Posteraro and E., Blackwell, J. Biomed. Mater. Res. 24 (1990) 939–957.

    Google Scholar 

  26. E.Van, Pelt-Verkuil and J. J., Emeis, Histochemistry 71 (1981) 187–194.

    Google Scholar 

  27. J. R., Moffett, M. A., Namboodiri and J. H., Neale, J. Histochem. Cytochem. 41 (1993) 5.

    Google Scholar 

  28. M. F., Coté, E., Sirois and C., Doillon, J. Biomater. Sci. 3 (1992) 301–313.

    Google Scholar 

  29. M. I., Ionescu, A. P., Tandon, D. A. S., Mary and A., Abid, J. Thorac. Cardiovasc. Surg. 73 (1977) 31–42.

    Google Scholar 

  30. J. M., Lee, C. A., Pereira, D., Abdulla, W. A., Naimark and I., Crawford, Med. Eng. Phys. 17 (1995) 115–121.

    Google Scholar 

  31. J. M., Lee, S. A., Haberer, C. A., Pereira, W. A., Naimark, D. W., Courtman and G. J., Wilson, in ASTM Special Technical Publication 11: “Biomaterials' mechanical properties”, edited by H. E., Kambic and A.T., Yokobori (ASTM Philadelphia, 1994) pp. 19–42.

    Google Scholar 

  32. J. M. LEE and S. E. LANGDON (1995), J. Biomech. (in, press).

  33. A., Carpenter, Med. Instrum. 11 (1977) 98–101.

    Google Scholar 

  34. R. H., Heinzerling, P. D., Stein, J. M., Riddle, D. J., Magilligan Jr and J. J., Jennings, Henry Ford Hosp. Med. J. 30 (1982) 146–151.

    Google Scholar 

  35. M., Dahm, W. D., Lyman, A. B., Schwell, S. M., Factor and R. M., Frater, J. Thorac. Cardiovasc. Surg. 99 (1990) 1082–90.

    Google Scholar 

  36. G., Golomb, F. J., Schoen, M. S., Smith, J., Linden, M., Dixon and R. J., Levy, Amer. J. Pathol. 127 (1987) 122–130.

    Google Scholar 

  37. G., Gong, Z., Ling, E., Seifter, S. M., Factor and R. W., Frater, Eur. J. Cardio-Thorac. Surg. 5 (1991) 288–299.

    Google Scholar 

  38. F. J., Schoen and R. J., Levy, J. Card. Surg. 9 (1994) 222–227.

    Google Scholar 

  39. E., Eybl, A., Griesmacher, M., Grimm and E., Wolner, J. Biomed. Mater. Res. 23 (1989) 1355–1365.

    Google Scholar 

  40. M., Grimm, E., Eybl, M., Grabenwöger, H., Spreitzer, W., Jäger, G., Grimm, P., Böck, M. M., Müller and E., Wolner, Surgery 111 (1992) 74–78.

    Google Scholar 

  41. N. D., Broom and F. J., Thompson, Thorax 34 (1979) 166–176.

    Google Scholar 

  42. E. P. M., Rousseau, A. A. H. J., Sauren, M. C.Van, Hout and A. A.Van, Steenhoven, J. Biomech. 16 (1983) 339–348.

    Google Scholar 

  43. J. M., Lee, D. R., Boughner and D. W., Courtman, J. Biomed. Mater. Res. 18 (1984) 79–98.

    Google Scholar 

  44. E. A., Trowbridge, K. M., Roberts, C. E., Crofts and P. V., Lawford, J. Thorac. Cardiovasc. Surg. 92 (1986) 21–28.

    Google Scholar 

  45. E. A., Trowbridge, Crit. Rev. Biocompat 5 (1989) 105–172.

    Google Scholar 

  46. J. M., Lee, S. A., Haberer and D. R., Boughner, J. Biomed. Mater. Res. 23 (1989) 457–475.

    Google Scholar 

  47. J. M., Lee, R., Corrente and S. A., Haberer, J. Biomed. Mater. Res. 23 (1989) 477–489.

    Google Scholar 

  48. J. M., Lee, M., Ku and S. A., Haberer, J. Biomed. Mater. Res. 23 (1989) 491–506.

    Google Scholar 

  49. I. J., Reece, R.Van, Noort, T. R. P., Martin and M. M., Black, Ann. Thorac. Surg. 33 (1982) 480–485.

    Google Scholar 

  50. E., Gross and B., Witkop, J. Biol. Chem. 237 (1962) 1856.

    Google Scholar 

  51. J. E., Eastoe, In “Treatise on collagen, Vol 1. chemistry of collagen,” edited by G. N., Ramachandran (Academic Press, New York, 1967) pp. 1–72.

    Google Scholar 

  52. S., Seifter and E., Harper, In “Methods in enzymology, Vol. 19, proteolytic enzymes,” edited by G. E., Perlmann and L., Lorand (Academic Press, New York, 1970) pp. 613–635.

    Google Scholar 

  53. E., Harper, Ann. Rev. Biochem. 49 (1980) 1063–1078.

    Google Scholar 

  54. K. A., Walsh, In “Methods in enzymology, Vol 19, Proteolytic enzymes,” edited by G. E., Perlmann and L., Lorand (Academic Press, New York, 1970) pp. 41–63.

    Google Scholar 

  55. K., Hannig and A., Nordwig, In “Treatise on collagen, Vol 1. chemistry of collagen,” edited by G. N., Ramachandran (Academic Press, New York, 1967) pp. 73–101.

    Google Scholar 

  56. K. A., Piez, In “Biochemistry of collagen,” edited by G. N., Ramachandran and A. H., Reddi (Plenum Press, New York, 1976) pp. 1–44.

    Google Scholar 

  57. D., Galloway, In “Collagen in health and disease,” edited by J. B., Weiss and M. I. V., Jayson, (Churchill Livingstone, New York, 1982) pp. 528–557.

    Google Scholar 

  58. E. P., Katz and C. W., David, Biopolymers 29 (1990) 791–798.

    Google Scholar 

  59. J. M., Lee and S. E., Langdon, Trans. Soc. Biomater. 17 (1995) 283.

    Google Scholar 

  60. D. T., Cheung, N., Perelman, E. C., Ko and M. E., Nimni, Conn. Tiss. Res. 13 (1985) 109–115.

    Google Scholar 

  61. S., Bauminger and M., Wilchek, Meth. Enzymol. 70 (1980) 151–159.

    Google Scholar 

  62. Z., Grabarek and J., Gergely, Anal. Biochem. 185 (1990) 131–135.

    Google Scholar 

  63. M. A., Gilles, A. Q., Hudson, C. L., Borders Jr., Anal. Biochem. 184 (1990) 244–248.

    Google Scholar 

  64. J. V., Staros, R. W., Wright, D. M., Swingle, Anal. Biochem. 156 (1986) 220–222.

    Google Scholar 

  65. Y. P., Kato, M. G., Dunn, J. P., Zawadsky, A. J., Tria and F. H., Silver, J. Bone Joint Surg. A 73 (1991) 561–574.

    Google Scholar 

  66. E.M., Brown, J.M., Chen and S.H., Feairheller, J. Amer. Leather Chem. Assoc. 88 (1993) 2–11.

    Google Scholar 

  67. C., Elliott, K., Wang, S., Miller and R., Melvold, Transplantation 58 (1994) 966–968.

    Google Scholar 

  68. P.F. GRATZER, C.A. PEREIRA and J.M. LEE, J. Biomed. Mater. Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.M., Edwards, H.H.L., Pereira, C.A. et al. Crosslinking of tissue-derived biomaterials in 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC). J Mater Sci: Mater Med 7, 531–541 (1996). https://doi.org/10.1007/BF00122176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122176

Keywords

Navigation