Skip to main content
Log in

Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord

  • Published:
Journal of Neurocytology

Summary

The differentiation of glia in the central nervous system is not well understood. A major problem is the absence of an objective identification system for involved cells, particularly the early-appearing radial glia. The intermediate filament structural proteins vimentin and glial fibrillary acidic protein have been used to define the early and late stages, respectively, of astrocyte development. However, because of the non-specificity of vimentin and the temporal overlap in expression patterns of both proteins, it is difficult to refine our view of the process. This is especially true of the early differentiation events involving radial glia. Using the developmentally-expressed intermediate filament-associated protein IFAP-70/280 kD in conjunction with vimentin and glial fibrillary acidic protein markers, a comprehensive investigation of this problem was undertaken using immunofluorescence microscopy of developing rat spinal cord (E13-P28 plus adult). The phenotypes of the cells were defined on the basis of their immunologic composition with respect to IFAP-70/280 kD (I), vimentin (V) and GFAP (G). A definitive immunotype for radial glia was established, viz, I+/V+/G; thus reliance upon strictly morphological criteria for this early developmental cell was no longer necessary. Based upon the immunotypes of the cells involved, four major stages of macroglial development were delineated: (1) radial glia (I+/V+/G); (2) macroglial progenitors (I+/V+/G+); (3) immature macroglia (I/V+/G+); and (4) mature astrocytes (I/V+/G+ primarily in white matter and I/V/G+, the predominant type in gray matter). It is of interest to note that the cells of the floor plate were distinguished from radial glia by their lack of IFAP-70/280 kD immunoreactivity. Introduction of the IFAP-70/280 kD marker has therefore provided a more refined interpretation of the various differentiation stages from radial glia to mature astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Basset, E. M., Kalnins, V. I., Subrahmanyan, L., Ahmed, I. &Fedoroff, S. (1988a) 48-kilodalton intermediate-filament-associated protein in astrocytes.Journal of Neuroscience Research 19, 1–13.

    PubMed  Google Scholar 

  • Abd-El-Basset, E. M., Kalnins, V. I. &Fedoroff, S. (1988b) Expression of 48-kilodalton intermediate filament-associated protein in differentiating and in mature astrocytes in various regions of the central nervous system.Journal of Neuroscience Research 21, 226–37.

    PubMed  Google Scholar 

  • Albers, K. &Fuchs, E. (1992) The molecular biology of intermediate filament proteins.International Review of Cytology 134, 243–79.

    PubMed  Google Scholar 

  • Altman, J. &Bayer, S. A. (1984)The development of the rat spinal cord Berlin: Springer-Verlag.

    Google Scholar 

  • Bignami, A. &Dahl, D. (1974) Astrocyte-specific protein and neuroglial differentiation: an immunofluorescence study with antibodies to the glial fibrillary acidic protein.Journal of Comparative Neurology 153, 27–38.

    PubMed  Google Scholar 

  • Bignami, A., Eng., L. F., Dahl, D. &Uyeda, C. T. (1972) Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence.Brain Research 43, 429–35.

    PubMed  Google Scholar 

  • Bignami, A., Raju, T. &Dahl, D. (1982) Localization of vimentin, the nonspecific intermediate filament protein, in embryonal glia and in early differentiating neurons.Developmental Biology 91, 286–95.

    PubMed  Google Scholar 

  • Bongcam-Rudloff, E., Nister, M., Betsholtz, C., Wang, J.-L., Stenman, G., Huebner, K., Croce, C. M. &Westermark, B. (1991) Human glial fibrillary acidic protein: Complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes.Cancer Research 51, 1553–60.

    PubMed  Google Scholar 

  • Bovolenta, P., Liem, R. K. &Mason, C. A. (1984) Development of cerebellar astroglia: transitions in form and cytoskeletal content.Developmental Biology 102, 248–59.

    PubMed  Google Scholar 

  • Carnow, T. B., Barbarese, E. &Carson, J. H. (1991) Diversification of glial lineages: a novel method to clone brain cellsin vitro on nitrocellulose substratum.Glia 4, 256–68.

    PubMed  Google Scholar 

  • Chabot, P. &Vincent, M. (1990) Transient expression of an intermediate filament-associated protein (IFAPa-400) duringin vivo andin vitro differentiation of chick embryonic cells derived from neuroectoderm.Developmental Brain Research 54, 195–204.

    PubMed  Google Scholar 

  • Chisholm, J. C. &Houliston, E. (1987) Cytokeratin filament assembly in the pre-implantation mouse embryo.Development 101, 565–82.

    PubMed  Google Scholar 

  • Chiu, F. C., Norton, W. T. &Fields, K. L. (1981) The cytoskeleton of primary astrocytes in culture contains actin, glial fibrillary acidic protein, and the fibroblast-type filament protein, vimentin.Journal of Neurochemistry 37, 147–55.

    PubMed  Google Scholar 

  • Choi, B. H. (1990) Gliogenesis in the developing human fetal brain. InDifferentiation and functions of glial cells (edited byLevi, G.) pp. 9–16. New York: Wiley-Liss.

    Google Scholar 

  • Choi, B. H. &Kim, R. C. (1984) Expression of glial fibrillary acidic protein in immature oligodendroglia.Science 223, 407–9.

    PubMed  Google Scholar 

  • Culican, S. M., Baumrind, N. L., Yamamoto, M. &Pearlman, A. L. (1990) Cortical radial glia: Identification in tissue culture and evidence for their transformation to astrocytes.Journal of Neuroscience 10, 684–92.

    PubMed  Google Scholar 

  • Dahl, D. (1981) The vimentin-GFA protein transition in rat neuroglia cytoskeleton occurs at the time of myelination.Journal of Neuroscience Research 6, 741–8.

    PubMed  Google Scholar 

  • Dahl, D., Bignami, A., Weber, K. &Osborn, M. (1981a) Filament proteins in rat optic nerves undergoing Wallerian degeneration: localization of vimentin, the fibroblast 100-A filament protein, in normal and reactive astrocytes,Experimental Neurology 73, 496–506.

    PubMed  Google Scholar 

  • Dahl, D., Rueger, D. C., Bignami, A., Weber, K. &Osborn, M. (1981b) Vimentin, the 57,000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia.European Journal of Cell Biology 24, 191–6.

    PubMed  Google Scholar 

  • Dale, B. A., Resing, K. A. &Haydock, P. V. (1990) Filaggrins. InCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 393–412. New York: Plenum.

    Google Scholar 

  • Edwards, M. A., Yamamoto, M. &Caviness, V. S., Jr. (1990) Organization of radial glia and related cells in the developing murine CNS: an analysis based on a new monoclonal antibody marker.Neuroscience 36, 121–44.

    PubMed  Google Scholar 

  • Eng, L. F., Vanderhaeghen, J. J., Bignami, A. &Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Research 28, 351–4.

    PubMed  Google Scholar 

  • Evrard, C., Borde, I., Marin, P., Galiana, E., Premont, J., Gros, F. &Rouget, P. (1990) Immortalization of bipotential and plastic glio-neuronal precursor cells.Proceedings of the National Academy of Sciences (USA) 87, 3062–6.

    Google Scholar 

  • Fedoroff, S. (1986) Prenatal ontogenesis of astrocytes. InAstrocytes, Vol. 1 (edited byFedoroff, S. &Vernadakis, A.) pp. 35–74. New York: Academic Press.

    Google Scholar 

  • Fliegner, K. H. &Liem, R. K. H. (1991) Cellular and molecular biology of neuronal intermediate filaments.International Review of Cytology 131, 109–67.

    PubMed  Google Scholar 

  • Foisner, R. &Wiche, G. (1991) Intermediate filament-associated proteins.Current Opinion on Cell Biology 3, 75–81.

    Google Scholar 

  • Frederiksen, K. &Mckay, D. G. (1988) Proliferation and differentiation of rat neuroepithelial precursor cellsin vivo.Journal of Neuroscience 8, 1144–51.

    PubMed  Google Scholar 

  • Gasser, U. E. &Hatten, M. E. (1990) Neuron-glia interactions of rat hippocampal cellsin vitro: glial-guided neuronal migration and neuronal regulation of glial differentiation.Journal of Neuroscience 10, 1276–86.

    PubMed  Google Scholar 

  • Gilmore, S. A. (1971) Neuroglial population in the spinal white matter of neonatal and early postnatal rats: an autoradiographic study of numbers of neuroglia and changes in their proliferative activity.Anatomical Record 171, 283–92.

    PubMed  Google Scholar 

  • Goldman, J. E. &Vaysse, P. J.-J. (1991) Tracing glial cell lineages in the mammalian forebrain.Glia 4, 149–56.

    PubMed  Google Scholar 

  • Goldman, J. E., Geier, S. S. &Hirano, M. (1986) Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture.Journal of Neuroscience 6, 52–60.

    PubMed  Google Scholar 

  • Goldman, J. E., Schaumburg, H. H. &Norton, W. T. (1978) Isolation and characterization of glial filaments from human brain,Journal of Cell Biology 78, 426–40.

    PubMed  Google Scholar 

  • Goldman, R. D. &Steinert, P. M. (eds.) (1990)Cellular and Molecular Biology of Intermediate Filaments. New York: Plenum.

    Google Scholar 

  • Hirano, M. &Goldman, J. E. (1988) Gliogenesis in rat spinal cord: evidence for origin of astrocytes and oligodendrocytes from radial precursors.Journal of Neuroscience Research 21, 155–67.

    PubMed  Google Scholar 

  • Hirano, S., Fuse, S. &Sohal, G. S. (1991) The effect of the floor plate on pattern and polarity in the developing central nervous system.Science 251, 310–12.

    PubMed  Google Scholar 

  • Hockfield, S. &Mckay, R. D. G. (1985) Identification of major cell classes in the developing mammalian nervous system.Journal of Neuroscience 5, 3310–28.

    PubMed  Google Scholar 

  • Houle, J. &Fedoroff, S. (1983) Temporal relationship between the appearance of vimentin and neural tube development.Developmental Brain Research 9, 189–95.

    Google Scholar 

  • Jackson, B. W., Grund, C., Winter, S., Franke, W. W. &Illmensee, K. (1981) Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos.Differentiation 20, 203–16.

    PubMed  Google Scholar 

  • Landry, C. F., Ivy, G. O. &Brown, I. R. (1990) Developmental expression of glial fibrillary acidic protein mRNA in the rat brain analyzed byin situ hybridization.Journal of Neuroscience Research 25, 194–203.

    PubMed  Google Scholar 

  • Lazarides, E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 283, 249–53.

    PubMed  Google Scholar 

  • Lehtonen, E., Lehto, V.-P., Vartio, T., Badley, R. A. &Virtanen, I., (1983) Expression of cytokeratin polypeptides in mouse oocytes and preimplantation embryos.Developmental Biology 100, 158–65.

    PubMed  Google Scholar 

  • Levitt, P., Cooper, M. L. &Rakic, P. (1981) Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis.Journal of Neuroscience 1, 27–39.

    PubMed  Google Scholar 

  • Lieska, N., Yang, H.-Y. &Goldman, R. D. (1985) Purification of the 300 k intermediate filament-associated protein and itsin vitro recombination with intermediate filaments.Journal of Cell Biology 100, 802–13.

    Google Scholar 

  • Liuzzi, F. J. &Miller, R. H. (1987) Radially oriented astrocytes in the normal adult rat spinal cord.Brain Research 403, 385–8.

    PubMed  Google Scholar 

  • Lukas, Z., Draber, P., Bucek, J., Draberova, E., Viklicky, V. &Staskova, Z. (1989) Expression of vimentin and glial fibrillary acidic protein in human developing spinal cord.Histochemical Journal 21, 693–702.

    PubMed  Google Scholar 

  • Mcdermott, K. W. G. &Lantos, P. L. (1989) The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain.Developmental Brain Research 45, 169–77.

    PubMed  Google Scholar 

  • Misson, J.-P., Yamamoto, M., Edwards, M. A., Schwarting, V. S. &Caviness, V. S., Jr. (1987) Identification of radial glial cells within the developing murine central nervous system using a new immuno-histochemical marker.Society for Neuroscience Abstracts 13, 1465.

    Google Scholar 

  • Misson, J.-P., Edwards, M. A., Yamamoto, M. &Caviness, V. S., Jr. (1988) Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker.Developmental Brain Research 44, 95–108.

    PubMed  Google Scholar 

  • Misson, J.-P., Takahashi, T. &Caviness, V. S., Jr. (1991) Ontogeny of radial and other astroglial cells in murine cerebral cortex.Glia 4, 138–48.

    PubMed  Google Scholar 

  • Osborn, M., Ludwig, M., Weber, K., Bignami, A., Dahl, D. &Bayreuther, K. (1981) Expression of glial and vimentin type intermediate filaments in cultures derived from human glial material.Differentiation 19, 161–7.

    PubMed  Google Scholar 

  • Pixley, S. K. R. &De Vellis, J. (1984) Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin.Developmental Brain Research 15, 201–9.

    Google Scholar 

  • Raff, M. C. (1989) Glial cell diversification in the rat optic nerve.Science 243, 1450–5.

    PubMed  Google Scholar 

  • Raju, T., Bignami, A. &Dahl, D. (1981)In vivo andin vitro differentiation of neurons and astrocytes in the rat embryo.Developmental Biology 85, 344–57.

    PubMed  Google Scholar 

  • Rakic, P. (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex.Journal of Comparative Neurology 145, 61–84.

    Google Scholar 

  • Ramon Y., Cajal, S. (1911)Histologie du Système Nerveux de l'Homme et des Vertébrés, Vol. II Paris: Maloine. (Reprinted by Madrid: Consejo Superior de Investigaciones Cientificas, Instituto Ramon y Cajal, 1955.)

    Google Scholar 

  • Schiffer, D., Giordana, M. T., Mighili, A., Gianccone, G., Pezzotta, S. &Mauro, A., (1986) Glial fibrillary acidic protein and vimentin in the experimental glial reaction of the rat brain.Brain Research 374, 110–18.

    PubMed  Google Scholar 

  • Schmechel, D. E. &Rakic, P. (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes.Anatomy and Embryology 156, 115–52.

    PubMed  Google Scholar 

  • Schnitzer, J. (1988) Immunocytochemical studies on the development of astrocytes, Muller (glial) cells, and oligodendrocytes in the rabbit retina.Developmental Brain Research 44, 59–72.

    PubMed  Google Scholar 

  • Schnitzer, J., Franke, W. W. &Schachner, M. (1981) Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of the developing and adult mouse nervous system.Journal of Cell Biology 90, 435–47.

    PubMed  Google Scholar 

  • Shaw, F., Osborn, M. &Weber, K. (1981) An immunofluor escence microscopical study of the neurofilament triplet proteins, vimentin and glial fibrillary acidic protein within the adult rat brain.European Journal of Cell Biology 26, 68–82.

    PubMed  Google Scholar 

  • Skoff, R. P. (1990) Gliogenesis in rat optic nerve: astrocytes are generated in a single wave before oligodendrocytes.Developmental Biology 139, 149–68.

    PubMed  Google Scholar 

  • Skoff, R. P. &Knapp, P. E. (1991) Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages.Glia 4, 165–74.

    PubMed  Google Scholar 

  • Steinert, P. M. &Roop, D. R. (1988) Molecular and cellular biology of intermediate filaments.Annual Review of Biochemistry 57, 593–625.

    PubMed  Google Scholar 

  • Valentino, K. L., Jones, E. G. &Kane, S. A. (1983) Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS.Brain Research 285, 317–36.

    PubMed  Google Scholar 

  • Vaysse, P. J.-J. &Goldman, J. E. (1990) A clonal analysis of glial lineages in neonatal forebrain developmentin vitro.Neuron 5, 227–35.

    PubMed  Google Scholar 

  • Weinstein, D. E., Shelanski, M. L. &Liem, R. K. H. (1991) Supression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons.Journal of Cell Biology 112, 1205–13.

    PubMed  Google Scholar 

  • Yang, H.-Y., Lieska, N., Goldman, A. E. &Goldman, R. D. (1985) A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells.Journal of Cell Biology 100, 620–31.

    PubMed  Google Scholar 

  • Yang, H.-Y., Lieska, N. &Goldman, R. D. (1990) Intermediate filament-associated proteins, inCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 371–91. New York: Plenum.

    Google Scholar 

  • Yang, H.-Y., Lieska, N., Goldman, A. E. &Goldman, R. D. (1992a) Colchicine-sensitive and cholchicine-insensitive intermediate filament systems distinguished by a new intermediate filament-associated protein, IFAP-70/280 kD.Cell Motility and the Cytoskeleton 22, 185–99.

    PubMed  Google Scholar 

  • Yang, H.-Y., Lieska, N., Goldman, R. D., Johnson-Seaton, D. &Pappas, G. D. (1992b) Distinct developmental subtypes of cultured non-stellate rat astrocytes distinguished by a new glial intermediate filament-associated protein.Brain Research 573, 161–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H.Y., Lieska, N., Shao, D. et al. Immunotyping of radial glia and their glial derivatives during development of the rat spinal cord. J Neurocytol 22, 558–571 (1993). https://doi.org/10.1007/BF01189043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01189043

Keywords

Navigation