Skip to main content
Log in

The role of synapses in cortical computation

  • Published:
Journal of Neurocytology

Summary

The synapse, first introduced as a physiological hypothesis by C. S. Sherrington at the close of the nineteenth century, has, 100 years on, become the nexus for anatomical and functional investigations of interneuronal communication. A number of hypotheses have been proposed that give local synaptic interactions specific roles in generating an algebra or logic for computations in the neocortex. Experimental work, however, has provided little support for such schemes. Instead, both structural and functional studies indicate that characteristically cortical functions, e. g., the identification of the motion or orientation of objects, involve computations that must be achieved with high accuracy through the collective action of hundreds or thousands of neurons connected in recurrent microcircuits. Some important principles that emerge from this collective action can effectively be captured by simple electronic models. More detailed models explain the nature of the complex computations performed by the cortical circuits and how the computations remain so remarkably robust in the face of a number of sources of noise, including variability in the anatomical connections, large variance in the synaptic responses and in the tria-to-trial output of single neurons, and weak or degraded input signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, B., Anderson, J., Douglas, R., Martin, K. &Nelson, C., (1994) Polyneuronal innervation of spiny stellate neurons in cat visual cortex.Journal of Comparative Nuerology 341, 39–49.

    Google Scholar 

  • Albe-Fessard, D. &Buser, P. (1953) Explorations de cetaines activités du cortex moteur du chat par microélectrodes: dérivations endo-somatiques.Journal of Physiology 45, 14–16.

    Google Scholar 

  • Albe-Fessard, D. &Buser, P. (1955) Activités intracellulaires recueillies dans le cortex sigmoide du chat: participation des neurones pyramidaux au ‘potential evoqué’ somesthétique.Journal of Physiology 47, 67–9.

    Google Scholar 

  • Anderson, J., Douglas, R., Martin, K. &Nelson, C. (1994a) Map of the synapses formed with the dendrites of spiny stellate neurons of cat visual cortex.Journal of Comparative Neurology 341, 25–38.

    Google Scholar 

  • Anderson, J., Douglas, R., Martin, K., Nelson, C. &Whitteridge, D. (1994b) Synaptic output of physiologically identified spiny neurons in cat visual cortex.Journal of Comparative Neurology 341, 16–24.

    Google Scholar 

  • Barlow, H. &Levick, W. (1964) Mechanism of directly selective units in rabbits retina.Journal of Physiology 1, 477–504.

    Google Scholar 

  • Ben-Yishai, R., Lev Bar-Or, R. &Sompolinsky, H. (1995) Theory of orientation tuning in visual cortex.Proceedings of the National Academy of Sciences (USA) 92, 3844–8.

    Google Scholar 

  • Berman, N., Douglas, R., Martin, K. &Whitteridge, D. (1991) Mechanisms of inhibition in cat visual cortex.Journal of Physiology 440, 697–722.

    Google Scholar 

  • Bernander, Ö., Douglas, R., Martin, K. &Koch, C. (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells.Proceedings of the National Academy of Sciences (USA)88, 11569–73.

    Google Scholar 

  • Bernander, Ö., Douglas, R. &Koch, C. (1994) Amplification and linearization of synaptic input to the apical dendrites of cortical pyramidal neurons.Journal of Neurophysiology 72, 2743–53.

    Google Scholar 

  • Blackstad, T. (1975) Electron microscopy of experimental axonal degeneration in photochemically modified Golgi preparations: a procedure for precise mapping of nervous connections.Brain Research 95, 191–210.

    Google Scholar 

  • Blomfield, S. (1974) Arithmetical operations performed by nerve cells.Brain Research 69, 1115–24.

    Google Scholar 

  • Braitenberg, V. &Schüz, A. (1991)Anatomy of the Cortex: Statistics and Geometry. New York: Springer Verlag.

    Google Scholar 

  • Bullier J., Mustari, M. &Henry, G. (1992) Receptive-field transformations between LGN neurons and S-cells of cat striate cortex.Journal of Neurophysiology 47, 417–38.

    Google Scholar 

  • Carandini, M. &Heeger, D. J. (1994) Summation and division by neurons in primate visual cortex.Science 264, 1333–5.

    Google Scholar 

  • Das, A. (1996). Orientation in visual cortex: a simple mechanism emerges.Neuron 16, 477–80.

    Google Scholar 

  • Dean, A., Hess, R. &Tolhurst, D. (1980) Divisive inhibition involved in direction selectivity.Journal of Physiology 308, 84–5P.

    Google Scholar 

  • Dehay, C., Douglas, R., Martin, K. &Nelson, C. (1991) Excitation by geniculocortical synapses is not ‘vetoed’ at the level of dendritic spines in cat visual cortex.Journal of Physiology 440, 723–34.

    Google Scholar 

  • Douglas, R. &Martin, K. (1990) Neocortex. InThe Synaptic Organization of the Brain, 2nd edition. (edited byShepherd, G.) pp. 389–438. New York, Oxford: Oxford University Press.

    Google Scholar 

  • Douglas, R. &Martin, K. (1991) A functional microcircuit for cat visual cortex.Journal of Physiology 440, 735–69.

    Google Scholar 

  • Douglas, R., Martin, K. &Witteridge, D. (1988) Selective responses of visual cortical cells do not depend on shunting inhibition.Nature 332, 642–4.

    Google Scholar 

  • Douglas, R., Martin, K. &Witteridge, D. (1989) A canonical microcircuit for neocortex.Neural Computation 1, 480–8.

    Google Scholar 

  • Douglas, R., Mahowald, M. & Martin, K. (1994). Hybrid analog-digital architectures for neuromorphic systems. InIEEE International Conference on Neural Networks. pp. 1848–53. Orlando.

  • Douglas, R., Koch, C., Mahowald, M., Martin, K. &Suarez, H. (1995) Recurrent excitation in neocortical circuits.Science 269, 981–5.

    Google Scholar 

  • Eccles, J. (1961) The nature of central inhibition.Proceedings of the Royal Society of London B 153, 445–76.

    Google Scholar 

  • Eccles, J. (1964)The Physiology of Synapses. Berlin: Springer.

    Google Scholar 

  • Einstein, G., Davis, T. &Sterling, S. P. (1987). Ultrastructure of synapses from the a-laminae of the lateral geniculate nucleus in layer iv of the cat striate cortex.Journal of Comparative Neurology 260, 63–75.

    Google Scholar 

  • Fairen, A., Peters, A. &Saldanha, J. (1977) A new procedure for examining golgi impregnated neurons in the cat demonstrated by light and electron microscopy.Journal of Neurocytology 6, 311–37.

    Google Scholar 

  • Fatt, P. &Katz, B. (1953) The effect of inhibitory nerve impulses on a crustacean muscle fibre.Journal of Physiology 121, 374–89.

    Google Scholar 

  • Ferster, D. (1988). Spatially opponent excitation and inhibition in simple cells of the cat visual cortex.Journal of Neuroscience 8, 1172–80.

    Google Scholar 

  • Ferster, D. &Jagadeesh, B. (1992) Epsp-ipsp interactions in cat visual cortex studied within vivo whole-cell patch recording.Journal of Neuroscience 12, 1262–74.

    Google Scholar 

  • Ferster, D. &Lindstrom, S. (1985) Augmenting responses evoked in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells.Journal of Physiology 367, 233–52.

    Google Scholar 

  • Ferster, D., Chung, S. &Wheat, H. (1996). Orientation selectivity of thalamic input to simple cells of cat visual cortex.Nature 380, 249–52.

    Google Scholar 

  • Freund, T., Martin, K., Somogyi, P. &Whitteridge, D. (1985) Innervation of cat visual areas 17 and 18 by physiologically identified x-and y-type thalamic afferents. ii. identification of postsynaptic targets by gaba immunocytochemistry and golgi impregnation.Journal of Comparative Neurology 242, 275–91.

    Google Scholar 

  • Fulton, J., ed. (1949)Physiology of the Nervous System. Oxford: Oxford University Press.

    Google Scholar 

  • Garey, L. &Powell, T. (1971) An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey.Proceedings of the Royal Society of London B 179, 21–40.

    Google Scholar 

  • Gray, E. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron-microscopy study.Journal of Anatomy 93, 420–33.

    Google Scholar 

  • Grieve, K. &Sillito, A. (1991) Are-appraisal of the role of layer vi of the visual cortex in the generation of cortical end inhibition.Experimental Brain Research 87, 521–9.

    Google Scholar 

  • Gustafsson, B., Wigstrom, H., Abraham, W. &Huang, Y. (1987) Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials.Journal of Neuroscience 7, 774–80.

    Google Scholar 

  • Hirsch, J., Alonso, J. &Reid, R. R. C. (1995) Visually evoked calcium action potentials in cat striate cortex.Nature 378, 612–16.

    Google Scholar 

  • Hubel, D. (1996) A big step along the visual pathway.Nature 380, 197–8.

    Google Scholar 

  • Hubel, D. &Wiesel, T. (1959) Receptive fields of single neurones in the cat's striate cortex.Journal of Physiology 148, 574–91.

    Google Scholar 

  • Hubel, D. &Wiesel, T. (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.Journal of Physiology 160, 106–54.

    Google Scholar 

  • Hubel, D. &Wiesel, T. (1977) The functional architecture of the macaque visual cortex. The ferrier lecture.Proceedings of the Royal Society of London B 198, 1–59.

    Google Scholar 

  • Huguenard, J., Hamill, O. &Prince, D., (1989) Sodium channels in dendrites of rat cortical pyramidal neurons.Proceedings of the National Academy of Sciences (USA) 86, 2473–77.

    Google Scholar 

  • Jack, J., Noble, D. &Tsien, R. (1975)Electric Current Flow in Excitable Cells. Oxford: Clarendon Press.

    Google Scholar 

  • Jack, J., Kullman, D., Larkman, A., Major, G. & Stratford, K. (1990) Quantal analysis of excitatory synaptic mechanisms in the mammalian central nervous system. InCold Spring Harbour Symposium on Quantitative biology, Vol. LV, pp. 57–67. Cold Spring Harbour Laboratory Press.

  • Jones, E. (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey.Journal of Comparative Neurology 160, 205–68.

    Google Scholar 

  • Kim, H., Beierlein, M. &Connors, B. (1995) Inhibitory control of excitable dendrites in cortex.Journal of Neuroscience 74, 1810–15.

    Google Scholar 

  • Kisvárday, Z., Bonhoeffer, T., Kim, D.-S. &Eysel, U. (1996) Functional topography of horizontal neuronal networks in cat visual cortex (area 18). InBrain Theory: Biological Basis and Computational Theory of Vision, (edited byAertsen, A. &Braitenberg, B.) pp. 97–122. Amsterdam: Elsevier.

    Google Scholar 

  • Koch, C. &Poggio, T. (1985) The synaptic veto mechanism: does it underly direction and orientation selectivity in the visual cortex? InModels of the Visual Cortex, (edited byRose, D. &Dobson, V.) pp. 408–19. New York: John Wiley.

    Google Scholar 

  • Koch, C. &Poggio, T. (1987) Biophysics of computation: neurons, synapses, and membranes. InSynaptic Function, (edited byEdelman, G. M., Gall, W. E. &Cowan, W. M.) pp. 637–97. New York: John Wiley.

    Google Scholar 

  • Koch, C., Poggio, T. &Torre, V. (1982) Non-linear interaction in a dendritic tree: localization, timing, and role of information processing.Proceedings of the National Academy of Sciences (USA) 80, 2799–802.

    Google Scholar 

  • Krnjevic, K. &Schwartz, S. (1967) The action of gaminobutyric acid on cortical neurones.Experimental Brain Research 3, 320–36.

    Google Scholar 

  • Levay, S. (1973). Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations.Journal of Comparative Neurology 150, 53–86.

    Google Scholar 

  • Levay, S. (1986) Synaptic organization of claustral and geniculate afferents to the visual cortex of the cat.Journal of Comparative Neurology 6, 3564–75.

    Google Scholar 

  • Levay, S. &Gilbert, C. (1976) Laminar patterns of geniculocortical projections in the cat.Brain Research 113, 1–19.

    Google Scholar 

  • Lorente de Nó, R. (1949) Cerebral cortex: architecture, intracortical connections, motor projections. InPhysiology of the Nervous System (edited byFulton, J.) pp. 288–315. New York: Oxford University Press.

    Google Scholar 

  • Lund, J. (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta).Journal of Comparative Neurology 147, 455–96.

    Google Scholar 

  • Mainen, Z. &Sejnowski, T. (1996) Influence of dendritic structure on firing pattern in model neocortical neurons.Nature 382, 362–6.

    Google Scholar 

  • Markram, H. &Sakmann, B. (1994) Calcium transients in apical dendrites evoked by single subthreshold excitatory post-synaptic potentials via low voltage-activated calcium channels.Proceedings of the National Academy of Sciences (USA) 91, 5207–11.

    Google Scholar 

  • Markram, H. &Tsodyks, M. (1996) Redistribution of synaptic efficacy between cortical pyramidal neurons.Nature 382, 807–10.

    Google Scholar 

  • Martin, K. (1984) Neuronal circuits in cat striate cortex. InCerebral Cortex: Vol. 2, Functional Properties of Cortical Cells (edited byJones, E. &Peters, A.) pp. 241–84. New York: Plenum Press.

    Google Scholar 

  • Martin, K. (1988) The Wellcome Prize Lecture. From single cells to simple circuits in the cerebral cortex.Quarterly Journal of Experimental Physiology 73, 637–702.

    Google Scholar 

  • Martin, K., Somogyi, P. &Whitteridge, D. (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex.Experimental Brain Research 50, 193–200.

    Google Scholar 

  • Mason, A., Nicoll, A. &Stratford, K. (1991) Synaptic transmission between individual pyramidal neurons of the rat visual cortexin vitro.Journal of Neuroscience 11, 72–84.

    Google Scholar 

  • Mcguire, B., Hornung, J.-P., Gilbert, C. &Wiesel, T. (1984) Patterns of synaptic input to layer 4 of cat striate cortex.Journal of Neuroscience 4, 3021–33.

    Google Scholar 

  • Mel, B. (1993) Synaptic integration in excitable dendritic trees.Journal of Neurophysiology 70, 1086–101.

    Google Scholar 

  • Mel, B. (1994) Information processing in dendritic trees.Neural Computation 6, 1031–85.

    Google Scholar 

  • Meyer, A. &Meyer, M. (1945)Boutons terminaus in the cerebral cortex.Journal of Anatomy 79, 180–5.

    Google Scholar 

  • Morrone, M., Burr, D. &Maffei, L. (1982) Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence.Proceedings of the Royal Society of London B 216, 335–54.

    Google Scholar 

  • Movshon, J., Thompson, I. &Tolhurst, D. (1978) Spatial summation in the receptive fields of simple cells in the cat's striate cortex.Journal of Physiology 283, 53–77.

    Google Scholar 

  • Ohzawa, I., Deangelis, G. &Freeman, R. (1990) Stereoscopic depth discrimination in visual cortex: neurons ideally suited as disparity detectors.Science 249, 1037–41.

    Google Scholar 

  • Pei, X., Volgushev, M., Vidyasagar, T. &Creutzfeldt, O. (1991) Whole cell recording and conductance measurements in cat visual cortexin vivo.Neuroscience Report 2, 485–8.

    Google Scholar 

  • Peters, A. &Payne, B. (1993) Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex.Cerebral Cortex 3, 69–78.

    Google Scholar 

  • Phillips, C. (1959) Actions of antidromic pyramidal volleys on single betz cells in the cat.Quarterly Journal of Experimental Physiology 44, 1–25.

    Google Scholar 

  • Pockberger, H. (1991) Electrophysiological and morphological properties of rat motor cortex neuronsin vivo.Brain Research 539, 181–90.

    Google Scholar 

  • Ramón Y Cajal, S. (1989) Recollections of my life (Translated byE. H. Craigie with the assistance ofJ. Cano). Reprinted, Philadelphia: MIT Press, [Cambridge, MA.: Americal Philosophical Society (1937)].

    Google Scholar 

  • Reid, C. &Alonso, J.-M. (1995) Specificity of monosynaptic connections from thalamus to visual cortex.Nature 378, 281–4.

    Google Scholar 

  • Rose, D. (1977) On the arithmetical operation performed by inhibitory synapses onto the neuronal soma.Experimental Brain Research 28, 221–3.

    Google Scholar 

  • Sclar, G. &Freeman, R. (1982) Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast.Experimental Brain Research 46, 457–61.

    Google Scholar 

  • Shadlen, M. &Newsome, W. (1994) Noise, neural codes and cortical organization.Current Opinion in Neurobiology 4, 569–79.

    Google Scholar 

  • Shepherd, G. (1972) The neuron doctrine: a revision of functional concepts.Yale Journal of Biology and Medicine 45, 584–99.

    Google Scholar 

  • Shepherd, G. (1978) Microcircuits in the nervous system.Scientific American 238, 93–103.

    Google Scholar 

  • Shepherd, G. &Brayton, R. (1987) Logic operations are properties of computer-simulated interactions between excitable dendritic spines.Neuroscience 21, 151–66.

    Google Scholar 

  • Shepherd, G., Brayton, R., Miller, J., Segev, I., Rinzel, J. &Rall, W. (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines.Proceedings of the National Academy of Sciences (USA) 82, 2192–5.

    Google Scholar 

  • Sherrington, C. (1897)The Central Nervous System. Vol. 3 ofA Text-Book of Physiology, 7th ed. (edited byFoster, M.) London: Macmillan.

    Google Scholar 

  • Sherrington, C. S. (1906)The Integrative Action of the Nervous System. New York: Charles Scribner's Sons.

    Google Scholar 

  • Sherrington, D. (1908) On reciprocal innervation of antagonistic muscles. Thirteenth note. On the antagonism between reflex inhibition and reflex excitation.Proceedings of the Royal Society of London B 80b, 565–78.

    Google Scholar 

  • Sherrington, C. S. (1940)Man on his Nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Somers, D., Nelson, S. &Sur, M. (1995) An emergent model of orientation selectivity in cat visual cortical simple cells.Journal of Neuroscience 15, 5448–65.

    Google Scholar 

  • Somogyi, P. (1989) Synaptic organization of gabaergic neurons and GabaA receptors in the lateral geniculate nucleus and visual cortex. InNeural Mechanisms of Visual Perception (edited byLam, D. C., &Gilbert, C.) pp. 35–62. Houston, TX: Portfolio.

    Google Scholar 

  • Stratford, K., Mason, A., Larkman, A., Major, G. &Jack, J. (1989) The modelling of pyramidal neurones in the visual cortex. InThe Computing Neuron (edited byDurbin, R., Miall, C. &Mitchinson, G.) pp. 296–321. Addison-Wesley, London.

    Google Scholar 

  • Stratford, K., Tarczy-Hornoch, K., Martin, K., Bannister, N. &Jack, J. (1966) Excitatory synaptic inputs to spiny stellate cells in cat visual cortex.Nature 382, 258–61.

    Google Scholar 

  • Stuart, G. &Sakmann, B. (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites.Nature 367, 69–72.

    Google Scholar 

  • Suarez, H., Koch, C. &Douglas, R. (1995) Modeling direction selectivity of simple cells in striate visual cortex using the canonical microcircuit.Journal of Neuroscience 15, 6700–19.

    Google Scholar 

  • Szentagothai, J. (1973) Synaptology of the visual cortex. InHandbook of Sensory Physiology, Vol VIII/3: Central Processing of Visual Information, Part B, Visual Centers in the Brain (edited byJung, R.) pp. 269–324. Berlin: Springer.

    Google Scholar 

  • Tanaka, K. (1983) Cross-correlation analysis of geniculostriate neuronal relationships in cats.Journal of Neurophysiology 49, 1303–18.

    Google Scholar 

  • Thomson, A., Deuchars, J. &West, D. (1993) Large, deep layer pyramid-pyramid single axon epsp's in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation mediated postsynaptically.Journal of Neuroscience 70, 2354–69.

    Google Scholar 

  • Uchizono, K. (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat.Nature 207, 642–3.

    Google Scholar 

  • Valverde, F. (1971) Short axon neuronal subsystems in the visual cortex of the monkey.International Journal of Neural Systems 1, 181–97.

    Google Scholar 

  • Whitteridge, D. (1993) The controversy over synaptic transmission.News in Physiological Sciences 8, 135–6.

    Google Scholar 

  • Yuste, R. &Denk, W. (1995) Dendritic spines as basic functional units of neuronal integration.Nature 375, 682–4.

    Google Scholar 

  • Yuste, R., Gutnick, M., Saar, D., Delaney, K. &Tank, D. (1994) Calcium accumulations in dendrites from neocortical neurons: an apical band and evidence for functional compartments.Neuron 13, 23–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douglas, R.J., Mahowald, M., Martin, K.A.C. et al. The role of synapses in cortical computation. J Neurocytol 25, 893–911 (1996). https://doi.org/10.1007/BF02284849

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284849

Keywords

Navigation