Skip to main content
Log in

Structure of diffusion and premixed laminar counterflow flames including molecular radiative transfer

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The interaction between radiation and combustion is studied theoretically in the case of strained counterflow nonluminous laminar flames. Both H2−O2 diffusion and C3H8-air premixed flames are considered. Calculations are based on detailed chemical kinetics and narrow-band statistical modeling of infrared radiative properties. It is shown that radiative transfer decreases the temperature level, which affects particularly the production and consumption of minor species and pollutants. For H2−O2 flames, a low strain rate extinction limit due to radiation is found. It is also shown that the commonly used approximation of optically thin medium is inaccurate, even for the small-scale laboratory flames considered here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Liu, Z. Y. Ye, and S. H. Sohrab, “On radiative cooling and temperature profiles of counterflow premixed flames,” Combust. Flame,64, 193–201 (1986).

    Google Scholar 

  2. Y. Liu and B. Rogg, “Modeling of thermally radiating diffusion flames with detailed chemistry and transport,” Eurotherm Seminar No. 17 “Heat Transfer in Radiating and Combusting System”, Cascais, Portugal (1990).

  3. K. N. Lakshmisha, P. J. Paul, and H. S. Mukunda, “On the flammability limits and heat loss in flames with detailed chemistry,” 23rd Symp. (Int.) on Combust., Paper No. 23-510, Orleans, France (1990).

  4. M. Sibulkin and A. Frendi, “Prediction of flammability limit of an unconfined premixed gas in the absence of gravity,” Combust. Flame,82, 334–345 (1990).

    Google Scholar 

  5. J. S. T'ien, “Diffusion flame extinction at small stretch rates: the mechanism of radiative loss,”ibid.,65, 31–34 (1986).

    Google Scholar 

  6. D. E. Negrelli, J. R. Lloyd, and J. L. Novotny, “A theoretical and experimental study of radiation-convection interaction in a diffusion flame,” J. Heat Transfer,99, 212–220 (1977).

    Google Scholar 

  7. M. D. Smooke, I. K. Puri, and K. Sehardi, “A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane and diluted air,” 21st Symp. (Int.) on Combust, Reinhold, NY (1986).

    Google Scholar 

  8. N. Darabiha and S. Candel, “The influence of the temperature on the extinction and ignition limits of strained hydrogen—air diffusion flames,” Combust. Sci. Technol. (1992).

  9. P. A. Libby, A. Linan, and F. A. Williams “Strained premixed laminar flames with nonunity Lewis number,” Combust. Sci. Technol.,34, 257–293 (1983).

    Google Scholar 

  10. V. Giovangili and M. D. Smooke, “Extinction of strained premixed laminar flames with complex chemistry,” ibid.,53, 23–49 (1987).

    Google Scholar 

  11. R. J. Kee, J. A. Miller, and T. H. Jefferson, “CHEMKIN: a general-purpose, transportable, Fortran chemical kinetics code package,” Sandia National Lab. Report, SAND80-8003 (1980).

  12. R. J. Kee, J. Warnatz, and J. A. Miller, “A Fortran computer code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients,” Sandia National Lab. Report, SAND83-8209 (1983).

  13. N. Darabiha and V. Giovangigli, “Vectorized computation of complex chemistry flames,” Proc. Int. Symp. on High Performance Computing, Elsevier Sci. Publ., Montpellier, France (1989), pp. 273–285.

    Google Scholar 

  14. G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH. Fundamental data,” J. Quant. Spectrosc. Radial. Transfer,2, 97–199 (1962).

    Google Scholar 

  15. I. L. Chidsey and D. R. Crosley, “Calculated rotational transition probabilities for the A-X system of OH,” J. Quant. Spectrosc. Radiat. Transfer,23, 187–199 (1980).

    Google Scholar 

  16. E. C. Rea, A. Y. Change, and K. Hanson, “Collisional broadening of the A2+ − X2II band of OH by H2O and CO2 in atmospheric-pressure flames,ibid.,41, 29–42 (1980).

    Google Scholar 

  17. A. G. Gaydon and H. G. Wolfhard, Flames. Their Structure, Radiation and Temperature, 4th ed., Wiley, New York (1979).

    Google Scholar 

  18. W. Malkmus, “Random Lorentz band model with exponential tailes S−1 line-intensity distribution,” J. Opt. Soc. Am.,57, 323–329 (1967).

    Google Scholar 

  19. A. Soufiani, J. M. Hartmann, and J. Taine, “Validity of band-model calculations for CO2 and H2O applied to radiative properties and conductive—radiative transfer,” J. Quant. Spectrosc. Radiant. Transfer,33, 243–257 (1985).

    Google Scholar 

  20. J. M. Hartmann, R. Levi Di Leon, and J. Taine, “Line-by-line and narrow-band-statistical model calculations for H2O,”ibid.,32, 119–127 (1984).

    Google Scholar 

  21. S. J. Young, “Nonisothermal band model theory,”ibid.,18, 1–28 (1977).

    Google Scholar 

  22. A. Soufiani and J. Taine, “Application of statistical narrow-band model to coupled radiation and convection at high temperature,” Int. J. Heat Mass Transfer,30, 437–447 (1987).

    Google Scholar 

  23. W. R. Briley and H. McDonald, “On the structure and use of linearized block implicit schemes,” J. Comput. Phys.,34, 54–73 (1980).

    Google Scholar 

  24. C. K. Westbrook and F. L. Dryer, “Chemical kinetic modeling of hydrocarbon combustion,” Prog. Energy Combust. Sci.,10, 1–57 (1984).

    Google Scholar 

  25. J. A. Miller and C. T. Bowman, “Mechanism and modeling of nitrogen in combustion,”ibid.,15, 287–338 (1989).

    Google Scholar 

  26. S. H. Sohrab and C. K. Law, “Extinction of premixed flames by stretch and radidative loss,” Int. J. Heat Mass Transfer,27, 291–300 (1984).

    Google Scholar 

  27. G. L. Hubbard and C. L. Tien, “Infrared mean absorption coefficiens of luminous flames and smoke,” J. Heat Transfer,100, 235–239 (1978).

    Google Scholar 

Download references

Authors

Additional information

Laboratoire d'Energétique Moléculaire et Macroscopique, Combustion du CNRS et de l'ECP, Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France. Published in Fizika Goreniya i Vzryva, Vol. 29, No. 3, pp. 55–60, May–June, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dagusé, T., Soufiani, A., Darabiha, N. et al. Structure of diffusion and premixed laminar counterflow flames including molecular radiative transfer. Combust Explos Shock Waves 29, 306–311 (1993). https://doi.org/10.1007/BF00797647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00797647

Keywords

Navigation