Skip to main content
Log in

Phylogenetic relationships ofCryptococcus neoformans and some related basidiomycetous yeasts determined from partial large subunit rRNA sequences

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The genusCryptococcus was found to be heterogeneous on the basis of partial rRNA sequences. The human-pathogenic speciesC. neoformans, comprising 4 serotypes and havingFilobasidiella neoformans andF. bacillispora as teleomorphs, was found at a relatively large distance fromFilobasidium. Serotypes B and C had identical sequences, while in A and D they were different, with D closer to B and C than to A.Filobasidiella depauperata, which lacks a yeast-like anamorph, clustered withF. neoformans.

The genusFilobasidium was clearly separated fromFilobasidiella and clustered withC. albidus, C. kuetzingii, C. gastricus, C. lupi, C. vishniaciae, C. bhutanensis, C. aerius, C. terreus andC. ater. The latter may represent the anamorph ofFilobasidium elegans. The organe to red species ofCryptococcus, as well asC. aquaticus andC. yarrowii, were found completely unrelated with these taxa,C. macerans being affiliated toCystofilobasidium capitatum.

The genusTrichosporon was found relatively homogeneous; it includesC. humicola, C. curvatus and the filamentous speciesHyalodendron lignicola. Cryptococcus flavus andC. dimennae probably belong to the Tremellales, though distances between these species are large. The positions ofC. laurentii andC. luteolus remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aulakh HS, Strauss SE & Kwon-Chung KJ (1981) Genetic relatedness ofFilobasidiella neoformans (Cryptococcus neoformans) andFilobasidiella bacillispora (Cryptococcus bacillisporus) as determined by deoxyribonucleic acid base composition and sequence homology studies. Int. J. Syst. Bacteriol. 31: 97–103

    Google Scholar 

  • Baharaeen S & Vishniac HS (1982)Cryptococcus lupi sp. nov., an antarctic Basidioblastomycete. Int. J. Syst. Bact. 32: 229–232

    Google Scholar 

  • Bandoni RJ, Oberwinkler F & Bandoni A-A (1991) On species ofFilobasidium associated with yuccas. Syst. Appl. Microbiol. 14: 98–101

    Google Scholar 

  • De Hoog GS, (1979) The black yeasts, II: Moniliella and allied genera. Stud. in Mycology 19: 1–90

    Google Scholar 

  • Dromer F, Guého E, Ronin O & Dupont B (1992) Serotyping of antibody specific for capsular polysaccharide. J. Clin. Microbiol. (Submitted)

  • Fell JW, Kurtzman CP & Kwon-Chung KJ (1989) Proposal to conserveCryptococcus (Fungi). Taxon 38: 151–152

    Google Scholar 

  • Fell JW, Statzell-Tallman A, Hetz MS & Kurtzman CP (1992) Partial rRNA sequences in marine yeasts: a model for identification of marine eukaryotes. Mol. Mar. Biol. Biotech. 1: 175–186

    Google Scholar 

  • Felsenstein J (1990) PHYLIP manual version 3.3. University Herbariunm, University of California, Berkeley, California

    Google Scholar 

  • Fonseca A & Van Uden N (1991)Cryptococcus yarrowii sp. nov., a novel yeast species from Portugal. Antonie van Leeuwenhoek 59: 177–181

    PubMed  Google Scholar 

  • Georgiev OI, Nikolaev N, Hadjiolov AA, Skryabin KG, Zakharyev VM & Bayev AA (1981) The structure of the yeast ribosomal RNA rRNA gene fromSaccharomyces cerevisiae. Nucleic Acids Res. 9: 6953–6958

    PubMed  Google Scholar 

  • Golubev WJ & Vagabova LM (1977) Deoxyribonucleic acid base composition in some yeast species. Izvest. Akad. Nauk SSSR, Ser. Biol. 6: 933–936

    Google Scholar 

  • Guého E, Kurtzman CP & Peterson SW (1989) Evolutionary affinities of Heterobasidiomycetous yeasts estimated from 18S and 25S ribosomal RNA sequence divergence. Syst. Appl. Microbiol. 12: 230–236

    Google Scholar 

  • Guého E, Smith MTh, de Hoog GS, Billon-Grand G, Christen R & Batenburg-van der Vegte WH (1992) Contributions to a revision of the genusTrichosporon. Antonie van Leeuwenhoek 61: 289–316

    PubMed  Google Scholar 

  • Ikeda R, Shinoda J, Fukazawa Y & Kaufman L (1982) Antigenic characterization ofCryptococcus neoformans serotypes and its application to serotyping of clinical isolates. J. Clin. Microbiol. 16: 22–29

    PubMed  Google Scholar 

  • Jaeger JA, Turner DH & Zucker H (1990) Predicting optimal and suboptimal secondary structures for RNA. Meth. Enzymol. 183: 281–306

    PubMed  Google Scholar 

  • Khan SR, Kimbrough JW & Kwon-Chung KJ (1981) Ultrastructure ofFilobasidiella arachnophila. Can. J. Bot. 59: 893–897

    Google Scholar 

  • Kocková-Kratochvílová A, Wegener K-A & Sláviková E (1976) Die Beziehungen innerhalb der GattungCryptococcus (Sanfelice) Vuillemin. Zentbl. Bakt., Abt. 2, 131: 610–631

    Google Scholar 

  • Kützing FT (1833) Systematische Zusammenstellung der niedern Algen-Gattungen und Arten. Linnaea 8: 365

    Google Scholar 

  • Kurtzman CP (1973) Formation of hyphae and chlamydospores byCryptococcus laurentii. Mycologia 65: 388–395

    PubMed  Google Scholar 

  • Kwon-Chung KJ (1975) A new genus,Filobasidiella, the perfect state ofCryptococcus neoformans. Mycologia 67: 1197–1200

    PubMed  Google Scholar 

  • Kwon-Chung KJ & Popkin TJ (1976) Ultrastructure of septal complex inFilobasidiella neoformans (Cryptococcus neoformans). J. Bact. 126: 524–528

    PubMed  Google Scholar 

  • Lodder J (1934) Die anaskosporogenen Hefen, erste Hälfte. North-Holland, Amsterdam

    Google Scholar 

  • McManus EJ & Jones JM (1985) Detection of aTrichosporon beigelii capsular polysaccharide in serum from a patient with disseminatedTrichosporon infection. J. Clin. Microbiol. 21: 681–685

    PubMed  Google Scholar 

  • Michot B, Hassouna N, Bachellerie JP (1984). Secondary structure of mouse 285 rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res. 12: 4259–4281

    PubMed  Google Scholar 

  • Mitchell TG, White TJ & Taylor JW (1992). Comparison of 58S ribosomal DNA sequences among the basidiomycetous yeast generaCystofilobasidium, Filobasidium andFilobasidiella. J. Med. Vet. Mycol. 30: 207–218

    PubMed  Google Scholar 

  • Moore RT (1978) Taxonomic significance of septal ultrastructure with particular reference to the jelly fungi. Mycologia 70: 1007–1024

    Google Scholar 

  • Moore RT (1979) Septal ultrastructure inSirobasidium magnum and its taxonomic implications. Antonie van Leeuwenhoek 45: 113–118

    PubMed  Google Scholar 

  • Moore RT & Kreger-van Rij (1972) Ultrastructure ofFilobasidium Olive. Can. J. Microbiol. 18: 1949–1951

    PubMed  Google Scholar 

  • Nakase T & Komogata K (1971) Significance of DNA base composition in the classification of yeast generaCryptococcus andRhodotorula. J. Gen. Appl. Microbiol. 17: 121–130

    Google Scholar 

  • Phaff J & Fell JW (1970)Cryptococcus Kützing emend. Phaff et Spencer. In Lodder J (Ed) The yeasts, a taxonomic study, pp 1088–1145, North Holland, Amsterdam

    Google Scholar 

  • Rhodes JC, Kwon-Chung KJ & Popkin TJ (1981) Ultrastructure of the septal complex in hyphae ofCryptococcus laurentii. J. Bact. 145: 1410–1412

    PubMed  Google Scholar 

  • Rodrigues de Miranda L & Bandoni RJ (1984) Systematic discussion of the yeast phase of the species of the Sirobasidiaceae and Tremellaceae. In Kreger-van Rij NJW (Ed): The yeasts—a taxonomic study, pp 546–555. Elsevier, Amsterdam

    Google Scholar 

  • Rodrigues de Miranda L & Batenburg-van der Vegte WH (1981)Cryptococcus mollis Kützing, type species of the genus: Investigation of the type material. Antonie van Leeuwenhoek 47: 65–72

    PubMed  Google Scholar 

  • Saitou N & Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425

    PubMed  Google Scholar 

  • Samson RA, Stalpers JA & Weijman ACM (1983) On the taxonomy of the entomogenous fungusFilobasidiella arachnophila. Antonie van Leeuwenhoek 49: 447–456

    PubMed  Google Scholar 

  • Schmeding KA, Jong SC & Hugh R (1981) Sexual compatibility between serotypes ofFilobasidiella neoformans (Cryptococcus neoformans). Curr. Microbiol. 5: 133–138

    Google Scholar 

  • Slodki ME, Wickerham ZJ & Bandoni RJ (1966) Extracellular polysaccharides fromCryptococcus andTremella: a possible taxonomic relationship. Can. J. Microbiol. 12: 489–494

    PubMed  Google Scholar 

  • Smith AB, Lafay B & Christen R (1992) Comparative variation of morphological and molecular evolution through geologic time: 28S ribosomal RNA versus morphology in Echinoids. Molec. Phyl. Evol. (in press)

  • Sugita T, Nishikawa A & Shinoda T (1992) DNA relatedness among the three varieties ofCryptococcus albidus. J. Gen. Appl. Microbiol. 38: 83–86

    Google Scholar 

  • Sugiyama J, Fukagawa M, Chiu S-W & Komogata K (1985) Cellular carbohydrate composition, DNA base composition, ubiquinone systems, and Diazonium Blue B color test in the generaRhodosporidium, Leucosporidium, Rhodotorula and related basidiomycetous yeasts. J. Gen. Appl. Microbiol. 31: 519–550

    Google Scholar 

  • Sugiyama J, Nagai K & Komagata K (1987) Ubiquinone systems in strains of species in the black yeast generaPhaeococcomyces, Exophiala andRhinocladiella. J. Gen. Appl. Microbiol. 33: 197–204

    Google Scholar 

  • Swofford DL (1990) PAUP: phylogenetic analysis using parsimony, version 3.0. Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Vaughan Martini A (1991) Intraspecific discontinuity within the yeast speciesCryptococcus albidus as revealed by nDNA/DNA reassociation. Exper. Mycol. 15: 140–145

    Google Scholar 

  • Vishniac HS & Baharaeen S (1982) Five new basidioblastomycetous yeast species segregated fromCryptococcus vishniacii emend. auct., an Antarctic yeast species comprising four new varieties. Int. J. Syst. Bact. 32: 437–445

    Google Scholar 

  • Weijman ACM, Rodrigues de Miranda L & Van der Walt JP (1988) Redefinition ofCandida Berkhout and the consequent emendation ofCryptococcus Kützing andRhodotorula Harrison. Antonie van Leeuwenhock 54: 545–553

    Google Scholar 

  • Yamada Y & Kondô K (1972) Taxonomic significance of coenzyme Q system in yeasts and yeast-like fungi. Proc. 2nd Int. Spec. Symp. Yeasts, Tokyo pp. 63–69

  • Yamada Y & Kondô K (1973) Coenzyme Q system in the classification of the yeast generaRhodotorula andCryptococcus, and the yeast-like generaSporobolomyces andRhodosporidium. J. Gen. Appl. Microbiol. 19: 59–77

    Google Scholar 

  • Yamada Y, Ohishi T & Kondô K (1983) The coenzyme Q system in strains of some yeasts and yeast-like fungi. J. Gen. Appl. Microbiol. 29: 51–57

    Google Scholar 

  • Yamada Y, Nagahama T, Kawasaki H & Banno I (1990) The phylogenetic relationship of the generaPhaffia Miller, Yoneyama et Soneda andCryptococcus Kützing emend. Phaff et Spencer (Cryptococcaceae) based on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J. Gen. Appl. Microbiol. 36: 403–414

    Google Scholar 

  • Yamazaki M & Komagata K (1982) An electrophoretic comparison of enzymes in the genusCryptococcus and related microorganisms. J. Gen. Appl. Microbiol. 28: 429–449

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guého, E., Improvisi, L., Christen, R. et al. Phylogenetic relationships ofCryptococcus neoformans and some related basidiomycetous yeasts determined from partial large subunit rRNA sequences. Antonie van Leeuwenhoek 63, 175–189 (1993). https://doi.org/10.1007/BF00872392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872392

Key words

Navigation