Skip to main content
Log in

PCR-ribotyping of type isolates of currently acceptedExophiala andPhaeococcomyces species

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Portion of the ribosomal repeat of the type strains of the generaExphiala andPhaeococcomyces were subjected to RFLP analysis. The amplicon length of the small subunit rRNA, the fragment NS1-NS24, was found to vary between 1800 to 3200 nucleotides. In contrast, the length of the fragment ITS1-ITS4 comprising the internal transcribed spacers (ITS1 and ITS2) was found to be constant at 600 nucleotides. Analysis of restriction profiles confirmed the synonymy ofExophiala dermatitidis andMycotorula schawii. Torula bergeri andSporotrichum gougerotii were found to be identical toPhaeoannellomyces elegans, but different from their alleged synomymE. castellanii. A phenogram is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowen AR, Chen-Wu JL, Momany M, Young R, Szaniszlo PJ & Robbins PW (1992) Classification of fungal chitin synthethases. PNAS 89: 519–523

    Google Scholar 

  • Carmichael JW (1966) Cerebral mycetoma of trout due to aPhialophora-like fungus. Sabouraudia 5: 120–123

    PubMed  Google Scholar 

  • DePriest PT & Gargas A (1994) Lichens as models for the study of molecular evolution: Structure and variation of rRNA predicted by optional group I introns. Abstr. IMC5 August 14–21, Vancouver

  • Espinel-Ingroff A, Shadomy S, Kerkering TM & Shadomy HJ (1984) Exoantigen test for the differentiation ofExophiala jeanselmei andWangiella dermatitidis from other dematiaceous fungi. J. Clin. Microbiol. 20: 301–307

    Google Scholar 

  • Goto S, Aono R, Sugiyama J & Horikoshi K (1981)Exophiala alcalophila, a new black yeast-like hyphomycete with an accompanyingPhaeococcomyces alcalophilus morph, and its physiological characteristics. Trans. Mycol. Soc. Japan 22: 429–439

    Google Scholar 

  • Haase G, Sonntag L, Peer Y van de, Uijthof JMJ, Podbielski A & Melzer-Krick B (1995) Phylogenetic analysis of ten black yeasts using nuclear small subunit rRNA gene sequences. Antonie van Leeuwenhoek 68: 19–33, this issue

    Google Scholar 

  • Hoog GS de (1977)Rhinocladiella and allied genera. Stud. Mycol. 15: 1–140

    Google Scholar 

  • Hoog GS de, Gerrits van den Ende AHG, Uijthof JMJ & Untereiner WA (1995) Nutritional physiology of type isolates of currently accepted species ofExophiala andPhaeococcomyces. Antonie van Leeuwenhoek 68: 43–49, this issue

    PubMed  Google Scholar 

  • Hoog GS de & Haase G (1993) Nutritional physiology and selective isolation ofExophiala dermatitidis. Antonie van Leeuwenhoek 64: 17–26

    PubMed  Google Scholar 

  • Hoog GS de & McGinnis MR (1987) Ascomycetous black yeasts. Stud. Mycol. 30: 187–199

    Google Scholar 

  • Hoog GS de, Takeo K, Yoshida S, Göttlich E, Nishimura K & Miyaji M (1994) Phaeoanamorphic life cycle ofExophiala (Wangiella) dermatitidis. Antonie van Leeuwenhoek 65: 143–153

    PubMed  Google Scholar 

  • Iwatsu T, Nishimura K & Miyaji M (1984)Exophiala castellanii sp. nov. Mycotaxon 20: 307–314

    Google Scholar 

  • Iwatsu T, Udagawa S-I & Takase T (1991) A new species ofExophiala recovered from drinking water. Mycotaxon 41: 321–328

    Google Scholar 

  • Katz B & McGinnis MR (1980) A new species ofExophiala recovered from loblolly pine litter. Mycotaxon 11: 182–184

    Google Scholar 

  • Kawasaki M, Ishizaki H, Nishimura K & Miyaji M (1990) Mitochondrial DNA analysis ofExophiala jeanselmei andExophiala dermatitidis. Mycopathologia 110: 107–112

    PubMed  Google Scholar 

  • —— (1993) Mitochondrial DNA analysis ofExophiala moniliae. Mycopathologia 121: 7–10

    PubMed  Google Scholar 

  • Matsumoto T, Nishimoto K, Kimura K, Padhye AA, Ajello L & McGinnis MR (1984) Phaeohyphomycosis caused byExophiala moniliae. Sabouraudia 22: 17–26

    Google Scholar 

  • McGinnis MR (1977)Exophiala spinifera, a new combination forPhialophora spinifera. Mycotaxon 5: 337–340

    Google Scholar 

  • Middelhoven WJ, Hoog GS de & Notermans S (1989) Carbon assimilation and extracellular antigens of some yeast-like fungi. Antonie van Leeuwenhoek 55: 165–175

    PubMed  Google Scholar 

  • Molina FI, Inoue T & Jong S-C (1992a) Restriction polymorphisms in the internal transcribed spacers and 5.8S rDNA ofSaccharomyces. Curr. Microbiol. 25: 251–255

    PubMed  Google Scholar 

  • —— (1992b) Ribosomal DNA restriction analysis reveals genetic heterogeneity inSaccharomyces cerevisiae Meyen ex Hansen. Int. J. Syst. Bacteriol. 42: 499–502

    PubMed  Google Scholar 

  • Molina FI, Shen P & Jong S-C (1993) Validation of the species concept in the genusDekkera by restriction analysis of genes coding for rDNA. Int. J. Syst. Bacteriol. 43: 32–35

    PubMed  Google Scholar 

  • Möller EM, Bahnweg G, Sandermann H & Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies and infected plant tissues. Nucl. Acids Res. 20: 6115–6116

    Google Scholar 

  • Müller E, Petrini O, Fisher PJ, Samuels GJ & Rossman AY (1987) Taxonomy and anamorphs of the Herpotrichiellaceae with notes on generic synonymy. Trans. Br. Mycol. Soc. 88: 63–74

    Google Scholar 

  • Pedersen OA & Langvad F (1989)Exophiala psychrophila sp. nov., a pathogenic species of the black yeast isolated from farmed atlantic salmon. Mycol. Res. 92: 153–156

    Google Scholar 

  • Sugiyama J, Nagai K & Komagata K (1987) Ubiquinone systems in strains of species in the black yeast generaPhaeococcomyces, Exophiala, Hortaea andRhinocladiella. J. Gen. Appl. Microbiol. 33: 197–204

    Google Scholar 

  • Swofford DL (1991) PAUP version 3.1.1. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois

  • Taguchi H, Tanaka R, Nishimura K & Miyaji M (1988) Application of flow cytometry to differentiatingExophiala dermatitidis, E. moniliae andE. jeanselmei from each other. Mycopathologia 103: 87–90

    PubMed  Google Scholar 

  • Takeo K & Hoog GS de (1991) Karyology and hyphal characters as taxonomic criteria in Ascomycetous black yeasts and related fungi. Antonie van Leeuwenhoek 60: 35–42

    PubMed  Google Scholar 

  • Uijthof JMJ, Hoog GS de, Cock AWAM de, Takeo K & Nishimura K (1994) Pathology of strains of the black yeastExophiala (Wangiella) dermatitidis: an evaluation based on PCR. Mycoses 7/8: 235–242

    Google Scholar 

  • Uijthof JMJ, Belkum A van & Hoog GS de (1995) Analysis of ITS1 sequences forExophiala and related type isolates (submitted)

  • White TJ, Bruns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (Eds) PCR Protocols (pp 315–322) Academic Press, San Diego, California

    Google Scholar 

  • Yamada Y, Sugihara K, Eijk GW van, Roeijmans HJ & Hoog GS de (1989) Coenzyme Q systems in ascomycetous black yeasts. Antonie van Leeuwenhoek 56: 349–356

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uijthof, J.M.J., de Hoog, G.S. PCR-ribotyping of type isolates of currently acceptedExophiala andPhaeococcomyces species. Antonie van Leeuwenhoek 68, 35–42 (1995). https://doi.org/10.1007/BF00873290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873290

Key words

Navigation