Skip to main content

Advertisement

Log in

Significance of VLA-4–VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In previous work, we established the B9/BM1 syngeneic murine bone marrow metastasis model. Interleukin (IL)-6-dependent, IL-1-producing B9/BM1 cells, which colonize the vertebral and femoral marrow after i.v. injection, show great similarity in cell surface phenotype to human myeloma cells, especially the expression of 3 adhesion molecules, CD44, VLA-4 and ICAM-1. Here we investigated the function of these adhesion molecules by binding and transendothelial invasion assays using a newly established bone marrow-derived endothelial cell line (BMEC). A combination of monoclonal antibodies against CD44 and VLA-4 significantly inhibited the adherence of B9/BM1 cells to BMEC and anti-CD44 mAb especially blocked B9/BM1 transendothelial invasion of unstimulated BMEC cells. Results of additional experiments, in which the cells were treated with anti-CD44 and hyaluronidase, demonstrated that the interaction of CD44 molecules on B9/BM1 cells with hyaluronan on BMEC cells was a critical factor in both adhesion and transendothelial invasion in this model. However, stimulation of BMEC with TNFα resulted in increased invasion by B9/BM1 cells, which was completely suppressed by anti-VCAM-1 mAb, implicating a significant role of this adhesion molecule in this process during inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nicolson GL. Organ specificity of tumor metastasis: Role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 1988; 7: 143–88.

    Article  PubMed  CAS  Google Scholar 

  2. Hawley TS, Lach B, Burns BF et al. Expression of retrovirally transduced IL-1± in IL-6-dependent B cells: A murine model of aggressive multiple myeloma. Growth Factors 1991; 5: 327–38.

    PubMed  CAS  Google Scholar 

  3. Hawley RG, Wang M-H, Fong AZC, Hawley TS. Association between ICAM-1 expression and metastatic capacity of murine B-cell hybridomas. Clin Exp Metastasis 1993; 11; 213–26.

    Article  PubMed  CAS  Google Scholar 

  4. Okada T, Hawley RG. Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. Int J Cancer 1995; 63: 823–30.

    CAS  Google Scholar 

  5. Okada T, Okuno H, Mitsui Y. A novel in vitro assay system for transendothelial tumor cell invasion: Significance of E-selectin and ±3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis 1994; 12: 305–14.

    Article  PubMed  CAS  Google Scholar 

  6. Okada T, Li J, Kodaka M, Okuno H. Enhancement of type IV collagenases by highly metastatic variants of HT1080 fibrosarcoma cells established by a transendothelial invasion system in vitro. Clin Exp Metastasis 1998; 16: 267–74.

    Article  PubMed  CAS  Google Scholar 

  7. Carols TM, Schwartz BR, Kovach NL et al. Vascular cell adhesionmolecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 1990; 76: 965–70.

    Google Scholar 

  8. Elices MJ, Osborn L, Takada Y et al. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 1990; 60: 577–84.

    Article  PubMed  CAS  Google Scholar 

  9. Bochner BS, Luscinskas FW, Gimbrone MA et al. Adhesion of human basophils, eosinophils and neutrophils to interleukin 1-activated human vascular endothelial cells: Contributions of endothelial adhesion molecules. J Exp Med 1991; 173: 1553–6.

    Article  PubMed  CAS  Google Scholar 

  10. Abe Y, Ballantyne CM, Smith CW. Functions of domain 1 and 4 of vascular cell adhesion molecule-1 in ±4 integrin-dependent adhesion under static and flow conditions are differentially regulated. J Immunol 1996; 157: 5061–9.

    PubMed  CAS  Google Scholar 

  11. Meerschaert J Furie MB. Monocytes use either CD11/CD18 or VLA-4 to migrate across human endothelium in vitro. J Immunol 1994; 152: 1915–26.

    PubMed  CAS  Google Scholar 

  12. Shang X-Z, Lang BJ, Issekutz AC. Adhesion molecule mechanisms mediating monocyte migration through synovial fibroblast and endothelium barriers: Role for CD11/CD8, very late antigen-4 (CD49d/CD29), very late antigen-5 (CD49e/CD29) and vascular cell adhesion molecule-1 (CD106). J Immunol 1998; 160: 467–74.

    PubMed  CAS  Google Scholar 

  13. Weber C, Springer TA. Interaction of vary late antigen-4 with VCAM-1 supports transendothelial chemotaxis of monocytes by facilitating lateral migration. J Immunol 1998; 161: 6825–34.

    PubMed  CAS  Google Scholar 

  14. Allen AR, McHale J, Smith J et al. Endothelial expression of VCAM-1 in experimental cresentic nephritis and effect of antibodies to very late antigen-4 or VCAM-1 on glomerular injury. J Immunol 1999; 162: 5519–27.

    PubMed  CAS  Google Scholar 

  15. Taooka Y, Chen J, Yednock T, Sheppard D. The integrin ±9β1 mediates adhesion to activated endothelial cells and transendothelial neutrophil migration through interaction with vascular cell adhesion molecule-1. J Cell Biol 1999; 145: 413–20.

    Article  PubMed  CAS  Google Scholar 

  16. Miyake K, Underhill CB, Lesley J, Kincade PW. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med 1990; 172: 69–75.

    Article  PubMed  CAS  Google Scholar 

  17. DeGrendele HC, Estess P, Picker LJ, Siegelman MH. CD44 and its ligand hyaluronate mediate rolling under physiologic flow: A novel lymphocyte-endothelial cell primary adhesion pathway. J Exp Med 1996; 183: 1119–30.

    Article  PubMed  CAS  Google Scholar 

  18. DeGrendele HC, Kosfiszer M, Estess P, Siegelman MH. CD44 activation and associated primary adhesion is inducible via T cell receptor stimulation. J Immunol 1997; 159: 2549–53.

    PubMed  CAS  Google Scholar 

  19. DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997; 278: 672–5.

    Article  PubMed  CAS  Google Scholar 

  20. Kogerman P, Sy M-S, Culp LA. Overexpressed human CD44s promotes lung colonization during micrometastasis of murine fibrosarcoma cells: Facilitated retention in the lung vasculature. Proc Natl Acad Sci USA 1997; 94: 13233–8.

    Article  PubMed  CAS  Google Scholar 

  21. Reeder JA, Gotley DC, Walsh MD et al. Expression of antisense CD44 variant 6 inhibits colorectal tumor metastasis and tumor growth in a wound environment. Cancer Res 1998; 58: 3719–26.

    PubMed  CAS  Google Scholar 

  22. Ladena, V, Ghiso JAA, Joffe EBK. Function and expression of CD44 during spreading, migration, and invasion of murine carcinoma cells. Exp Cell Res 1998; 242: 515–27.

    Article  Google Scholar 

  23. Gao AC, Lou W, Dong J-T, Isaacs JT. CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Res 1997; 57: 846–9.

    PubMed  CAS  Google Scholar 

  24. Gao AC, Lou W, Sleeman JP, Isaacs JT. Metastasis suppression by the standard CD44 isoform dose not require the binding of prostate cancer cells to hyaluronate. Cancer Res 1998; 58: 2350–2.

    PubMed  CAS  Google Scholar 

  25. English NM, Lesley JF, Hyman R. Site-specific de-N-glycosylation of CD44 activate hyaluronan binding, and CD44 activation state show distinct threshold densities for hyaluronan binding. Cancer Res 1998; 58: 3736–42.

    PubMed  CAS  Google Scholar 

  26. Chiu RK, Droll A, Dougherty ST et al. Alternatively spliced CD44 isoforms containing exon v10 promote cellular adhesion through recognition of condroitin sulfate-modified CD44. Exp Cell Res 1999; 248: 314–21.

    Article  PubMed  CAS  Google Scholar 

  27. Naot D, Sinov RV, Ish-Shalom D. CD44: Structure, function, and association with the malignant process. Adv Cancer Res 1997; 71: 241–319.

    Article  Google Scholar 

  28. Toyama-Sorimachi N, Kitamura F, Habuchi H et al. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability on hemtopoietic cells. J Biol Chem 1997; 272: 26714–9.

    Article  PubMed  CAS  Google Scholar 

  29. Sleeman JP, Rudy W, Hofmann M et al. Regulated clustering of variant CD44 proteins increases their hyaluronate binding capacity. J Cell Biol 1996; 135: 1139–50.

    Article  PubMed  CAS  Google Scholar 

  30. Ropponen K, Tammi M, Parkkinen J et al. Tumor cell-associated hyaluronan as an unfavorable prognostic factor in colorectal cancer. Cancer Res 1998; 58: 342–7.

    PubMed  CAS  Google Scholar 

  31. Itano N, Sawai T, Miyaishi O, Kimata K. Relationship between hyaluronan production and metastatic potential of mouse mammary carcinoma cells. Cancer Res 1999; 59: 2499–504.

    PubMed  CAS  Google Scholar 

  32. Oertli B, Beck-Schimmer B, Fan X, Wüthrich RP. Mechanisms of hyaluronan-induced up regulation of ICAM-1and VCAM-1 expression by murine kidney tubular epithelial cells: Hyaluronan triggers cell adhesion molecule expression through a mechanism involving activation of nuclear factor-kB and activating protein-1. J Immunol 1998; 161: 3431–7.

    PubMed  CAS  Google Scholar 

  33. Fujii K, Tanaka Y, Hubscher S et al. Cross-linking of CD44 on rheumatoid synovial cells up-regulates VCAM-1. J. Immunol 1999; 162: 2391–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, T., Hawley, R.G., Kodaka, M. et al. Significance of VLA-4–VCAM-1 interaction and CD44 for transendothelial invasion in a bone marrow metastatic myeloma model. Clin Exp Metastasis 17, 623–629 (1999). https://doi.org/10.1023/A:1006715504719

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006715504719

Navigation