Skip to main content
Log in

Optimal time-varying potential control

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

As an illustration of the potential utility of optimal-control theory, we determine the time-varying electrode potential which maximizes the desired product produced from a coupled, chemical-electrochemical reaction sequence occurring in a well-mixed batch reactor for a specified reaction time. The reactant is electrochemically reduced to a stable intermediate which is itself a reactant for two competing parallel reactions: a homogeneous chemical decomposition to the desired product, or a further electrochemical reduction to an undesired product. If the transfer coefficient of the first reaction is greater than that of the second, then chattering control, in which the potential switches at an infinite frequency between two limits, is optimal. If the transfer coefficients have the opposite relationship, then a continuous, time-varying potential is optimal. We compare the results of applying the optimal, chattering-potential control with those resulting from the best continuous and steady controls. Improved selectivity results from a chattering control and may be effected even in the presence of significant mass-transfer resistance. Since an infinite-frequency control cannot be actually implemented, we discuss how a high-frequency, rectangular waveform can be determined which results in essentially the same product distribution as a chattering control. A qualitative, simple-to-apply method to determine whether selectivity enhancement is attainable using chattering controls is also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Sakellaropoulous, AIChE J. 25(5) (1979) 781.

    Google Scholar 

  2. G. P. Sakellaropoulous and G. A. Francis, J. Electrochem. Soc. 126 (1979) 1728.

    Google Scholar 

  3. F. J. M. Horn and R. C. Lin, I & EC Proc. Des. Devel. 6 (1967) 21.

    Google Scholar 

  4. F. A. Fine and S. G. Bankoff, I & EC Fundamentals 6 (1967) 293.

    Google Scholar 

  5. L. Padmanabhan and S. G. Bankoff, Automatica 8 (1972) 65.

    Google Scholar 

  6. D. L. Schwieg and T. Z. Fahidy, Int. J. Control 20 (1974) 811.

    Google Scholar 

  7. M. A. Latifi, S. Risson and A. Storck, Entropie 163 (1991) 37.

    Google Scholar 

  8. A. J. Avila and M. J. Brown, Plating 57 (1970) 1105.

    Google Scholar 

  9. H. Y. Cheh, J. Electrochem. Soc. 118 (1971) 551.

    Google Scholar 

  10. D. T. Chin, J. Electrochem. Soc. 130 (1983) 1657.

    Google Scholar 

  11. J. Cl. Puippe and F. Leaman (eds), ‘Theory and Practise of Pulse Plating’, AESF (1986).

  12. T. R. Nolen and P. S. Fedkiw, J. Appl. Electrochem. 20 (1990) 370.

    Google Scholar 

  13. R. Bakshi, Ph.D. Thesis, North Carolina State University, Raleigh, NC (1992).

    Google Scholar 

  14. W. H. Ray, ‘Advanced Process Control’, McGraw Hill, New York (1981).

    Google Scholar 

  15. M. Athans and P. L. Falb, ‘Optimal Control’, McGraw Hill, New York (1966).

    Google Scholar 

  16. M. M. Denn, ‘Optimization by Variational Methods’, McGraw Hill, New York (1969).

    Google Scholar 

  17. Iu. P. Petrov, ‘Variational Methods in Optimal Control Theory’, Academic Press, New York (1968).

    Google Scholar 

  18. S. K. Mitter, Automatica 3 (1967) 135.

    Google Scholar 

  19. C. W. Merriam, Information and Control 8 (1965) 215.

    Google Scholar 

  20. L. S. Pontryagin, ‘The Mathematical Theory of Optimum Processes’, Wiley Interscience, New York (1962).

    Google Scholar 

  21. L. T. Biegler, Comput. & Chem. Eng. 8 (1984) 243.

    Google Scholar 

  22. T. H. Tsang, D. M. Himmelblau and T. F. Edgar, Int. J. Control 21 (5) (1975) 763.

    Google Scholar 

  23. C. P. Neuman and A. Sen, Automatica 9 (1973) 601.

    Google Scholar 

  24. C. P. Neuman and A. Sen, IEEE Trans. Autom. Control. 19 (1974) 67.

    Google Scholar 

  25. M. Minoux, ‘Mathematical Programming’, Wiley-Interscience, New York (1986).

    Google Scholar 

  26. J. C. Dunn, Control Dyn. Syst. 29 (2) (1988) 135.

    Google Scholar 

  27. D. G. Luenberger, ‘Optimization by Vector Space Methods’, John Wiley, New York (1969).

    Google Scholar 

  28. L. Hasdorff, ‘Gradient Optimization and Nonlinear Control’, John Wiley, New York (1976).

    Google Scholar 

  29. L. Armijo, Pac. J. Math. 16 (1966) 1.

    Google Scholar 

  30. V. F. Demyanov and A. M. Rubinov, ‘Approximate Methods in Optimization Problems’, American Elsevier, New York (1970).

    Google Scholar 

  31. D. Bertsekas, IEEE Trans. Autom. Control 21 (1976) 174.

    Google Scholar 

  32. J. Warga, J. Math. Anal. Appl. 4 (1962) 11.

    Google Scholar 

  33. M. Fjeld, Chem. Eng. Sci. 29 (1974) 921.

    Google Scholar 

  34. R. V. Gamkrelidze, ‘Principles of Optimal Control Theory’, Plenum Press, New York (1978).

    Google Scholar 

  35. J. C. Smeltzer and P. S. Fedkiw, J. Electrochem. Soc. 139 (1992) 1358.

    Google Scholar 

  36. R. T. Rockafellar, ‘Convex Analysis’, Princeton University Press, Princeton, NJ (1970).

    Google Scholar 

  37. R. Bakshi and P. S. Fedkiw, ‘The Optimal Time-Varying Cell-Voltage Control for a Parallel-Plate Reactor’, under review (1993).

  38. J. C. Puippe and N. Ibl, J. Appl. Electrochem. 10 (1980) 775.

    Google Scholar 

  39. F. J. M. Horn and J. E. Bailey, J. Optimization Theory Appl. 2 (1968) 441.

    Google Scholar 

  40. P. S. Fedkiw and W. D. Scott, J. Electrochem. Soc. 131 (1984) 1304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshi, R., Fedkiw, P.S. Optimal time-varying potential control. J Appl Electrochem 23, 715–727 (1993). https://doi.org/10.1007/BF00243341

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00243341

Keywords

Navigation