Skip to main content
Log in

High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

High energy ball milling, an industrially amenable technique, has been used to produce CO tolerant unsupported Pt–Ru based catalysts for the oxidation of hydrogen in polymer electrolyte fuel cells. Nanocrystalline Pt0.5–Ru0.5 alloys are easily obtained by ball-milling but their performances as anode catalysts are poor because nanocrystals composing the material aggregate during milling into larger particles. The result is a low specific area material. Improved specific areas were obtained by milling together Pt, Ru and a metal leacheable after the milling step. The best results were obtained by milling Pt, Ru, and Al in a 1:1:8 atomic ratio. After leaching Al, this catalyst (Pt0.5–Ru0.5 (Al4)) displays a specific area of 38 m2g−1. Pt0.5–Ru0.5 (Al4) is a composite catalyst. It consists of two components: (i) small crystallites (∼4 nm) of a Pt–Al solid solution (1–3 Al wt%) of low Ru content, and (ii) larger Ru crystallites. It shows hydrogen oxidation performance and CO tolerance equivalent to those of Pt0.5–Ru0.5 Black from Johnson Matthey, the commercial catalyst which was found to be the most CO tolerant one in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.B. Prater, J. Power Sources 61 (1996) 105.

    Google Scholar 

  2. A.J. Appleby, Phil. Trans. R. Soc. Lond. A354 (1996) 1681.

    Google Scholar 

  3. G.J.K. Acres and G.A. Hards, Phil. Trans. R. Soc. Lond. A354 (1996) 1671.

    Google Scholar 

  4. S. Gottesfeld and T.A. Zawodzinski, Adv. Electrochem. Sci. Eng. 5 (1997) 195.

    Google Scholar 

  5. A.J. Appleby and F.R. Foulkes, Fuel Cell Handbook, Krieger Publishing Company, Malabar, FA.

  6. N.E. Vanderborgh, J. Guante, R.E. Dean and R.D. Sutton, Abstract of the Fuel Cell Seminar in Long-Beach, CA. (Oct. 1988), Courtesy Associates, Inc., Washington, DC, p. 52.

    Google Scholar 

  7. S. Gottesfeld and J. Pafford, J. Electrochem. Soc. 135 (1988) 2651.

    Google Scholar 

  8. D. Wilkinson and D. Thompsett, Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems, O. Savadogo and P. R. Roberge (eds), Ecole Polytechnique Montreal, 1997, p. 266.

    Google Scholar 

  9. S. Wasmus and W. Vielstich, J. Appl. Electrochem. 23 (1993) 120.

    Google Scholar 

  10. B. Bittins-Cattaneo, S. Wasmus, B. Lopez-Mishima and W. Vielstich, J. Appl. Electrochem. 23 (1993) 625.

    Google Scholar 

  11. H.A. Gasteiger, N. Markovic, P.N. Ross, Jr and E.J. Cairns, J. Phys. Chem. 98 (1994) 617.

    Google Scholar 

  12. P.N. Ross, K. Kinoshita, A.J. Scarpellino and P. Stonehart, J. Electroanal. Chem. 63 (1975) 97.

    Google Scholar 

  13. V.B. Hughes and R. Miles, J. Electroanal. Chem. 145 (1983) 87.

    Google Scholar 

  14. M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 267.

    Google Scholar 

  15. H.A. Gasteiger, N.M. Markovic and P. N. Ross, Jr, J. Phys. Chem. 98 (1994) 8290.

    Google Scholar 

  16. H.A. Gasteiger, N.M. Markovic and P.N. Ross, Jr, J. Phys. Chem. 99 (1995) 8945.

    Google Scholar 

  17. X. Ren, M.S. Wilson and S. Gottesfeld, In: S. Gottesfeld, G. Halpert and A. Landgrebe (eds) Proton Conducting Membrane Fuel Cells I, The Electrochemical Society, Pennington, NJ, 1995, p. 252.

    Google Scholar 

  18. E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E.S. Smotkin and T.E. Mallouk, Science 280 (1988) 1735.

    Google Scholar 

  19. M.P. Hogarth and G.A. Hards, Platinum Metals Rev. 40 (1996) 150.

    Google Scholar 

  20. C.C. Koch, In: R.W. Cahn (ed.) Materials Science and Technology, Vol 15, Processing of Metals and Alloys, VCH, Verlagsgesellschaft, Weinheim, (1991), chapter 5, p. 193.

    Google Scholar 

  21. H. Gleiter, J. Appl. Crystallography, 24 (1991) 79.

    Google Scholar 

  22. A.W. Weber and H. Bakker, Physica B 153 (1988) 93.

    Google Scholar 

  23. R.B. Schwarz and C.C. Koch, Appl. Phys. Lett. 49 (1986) 146.

    Google Scholar 

  24. T. Masumoto, K. Hashimoto and M. Naka, In: B. Cantor (ed.) Proceedings of the the 3rd International Conference on Rapidly Quenched Metals, vol. 2, B., The Metal Society, London, (1978) p. 435.

    Google Scholar 

  25. R.M. Davis, B. McDermott and C.C. Koch, Metall. Trans. A 19A (1988) 2867.

    Google Scholar 

  26. J.M. Hutchinson, Plat. Met. Rev. 16 (1972) 88.

    Google Scholar 

  27. B.E. Warren, X-ray Diffraction, Dover Publication, New York.

  28. J. Huot, S. Bouaricha, S. Boily, J.P. Dodelet, D. Guay and R. Schulz, J. Alloys & Compounds 266 (1998) 307.

    Google Scholar 

  29. T. Springer, T. Zawodzinski and S. Gottesfeld, In: J. McBreen, S. Mukerjee and S. Srinivasan (eds) Proceedings of the symposium on Electrode Materials and Processes for Energy Conversion and Storage IV, The Electrochemical Society, Pennington, NJ, 97–13 (1997) p. 15.

    Google Scholar 

  30. E. Ivanov, S.A. Makhlouf, K. Sumiyama, H. Yamauchi, K. Suzuki and G. Golubkuva, J. Alloys and Compounds 185 (1992) 25.

    Google Scholar 

  31. A.A. Nayeb-Hashemi and J.B. Clark, Eds, Phase Diagrams of Binary Magnesium Alloys, ASM International, Metals Park, OH (1988) p. 257.

    Google Scholar 

  32. T.B. Massalski (Ed.), Binary Alloy Phase Diagram, 2nd edn., ASM International Materials Park, OH

  33. M.C. Denis, G. Lalande, D. Guay, J.P. Dodelet and R. Schulz, In: J. McBreen, S. Mukerjee and S. Srinivasan (eds), Proceedings of the symposium on Electrode Materials and Processes for Energy Conversion and Storage IV, The Electrochemical Society, Pennington, NJ, 97–13 (1997) p. 119.

    Google Scholar 

  34. J.S. Hammond and N. Winograd, J. Electroanal. Chem. 78 (1977) 55.

    Google Scholar 

  35. J.B. Goodenough, A. Hamnett, B.J. Kennedy, R. Manoharan and S.A. Weeks, J. Electroanal. Chem. 240 (1988) 133.

    Google Scholar 

  36. K.S. Kim and N. Winograd, J. Catal. 35 (1974) 66.

    Google Scholar 

  37. C.D. Wagner, W.W. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation. 1978.

  38. P.K. Shen and A.C.C. Tseung, J. Electrochem. Soc. 141 (1994) 3082.

    Google Scholar 

  39. P.K. Shen, K.Y. Chen and A.C.C. Tseung, J. Electrochem. Soc. 142 (1995) L85.

    Google Scholar 

  40. T. A. Zawodzinski, T. E. Springer, F. Uribe and S. Gottesfeld, Solid State Ionics 60 (1993) 199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis, M., Lalande, G., Guay, D. et al. High energy ball-milled Pt and Pt–Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. Journal of Applied Electrochemistry 29, 951–960 (1999). https://doi.org/10.1023/A:1003505123872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003505123872

Navigation