Skip to main content
Log in

1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR techniques. With 269 amino acids, this protein is one of the largest proteins to be sequentially assigned by NMR methods to date. Because of the size of the protein, some useful 3D correlation experiments were too insensitive to be used in the procedure. The HNCO, HN(CO)CA, HNCA and HCACO experiments are robust enough to provide most of the expected correlations for a protein of this size. It was necessary to use several experiments to unambiguously determine a majority of the α-protons. Combined use of HCACO, HN(COCA)HA, HN(CA)HA, 15N TOCSY-HMQC and 15N NOESY-HMQC experiments provided the Hα chemical shifts. Correlations for glycine protons were absent from most of the spectra. A combination of automated and interactive steps was used in the process, similar to that outlined by Ikura et al. [(1990) J. Am. Chem. Soc., 112, 9020–9022] in the seminal paper on heteronuclear backbone assignment. A major impediment to the linking process was the amount of overlap in the Cα and Hα frequencies. Ambiguities resulting from this redundancy were solved primarily by assignment of amino acid type, using Cα chemical shifts and ‘TOCSY ladders’. Ninety-four percent of the backbone resonances are reported for this subtilisin. The secondary structure was analyzed using 3D 15N NOESY-HMQC data and Cα secondary chemical shifts. Comparison with the X-ray structure [Betzel et al. (1992) J. Mol. Biol., 223, 427–445] shows no major differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov V.K., Ivaniva T.V., Berezin I.V. and Martinek K. (1971) FEBS Lett., 7, 23–25.

    Google Scholar 

  • Bachovchin W.W., Wong W.Y.L., Farr-Jones S., Shenvi A.B. and Kettner C.A. (1988) Biochemistry, 27, 7689–7697.

    Google Scholar 

  • Bax A. and Ikura M. (1991) J. Biomol. NMR, 1, 99–104.

    Google Scholar 

  • Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 133–138.

    Google Scholar 

  • Bech L.M., Sørensen S.B. and Breddam K. (1993) Biochemistry, 32, 2845–2852.

    Google Scholar 

  • Betzel C., Pal G.P. and Saenger W. (1988) Eur. J. Biochem., 178, 155–171.

    Google Scholar 

  • Betzel C., Klupsch S., Papendorf G., Hastrup S., Branner S. and Wilson K.S. (1992) J. Mol. Biol., 223, 427–445.

    Google Scholar 

  • Bode W., Papamakos E. and Musil D. (1987) Eur. J. Biochem., 166, 673–692.

    Google Scholar 

  • Bott R., Ultsch M., Kossiakoff A., Graycar T., Katz B. and Powers S. (1988) J. Biol. Chem., 263, 7895–7906.

    Google Scholar 

  • Briedigkeit L. and Frömmel C. (1989) FEBS Lett., 253, 83–87.

    Google Scholar 

  • Brown S.C., Weber P.L. and Mueller L. (1988) J. Magn. Reson., 77, 166–169.

    Google Scholar 

  • Clubb R.T., Thanabal V. and Wagner G. (1992a) J. Biomol. NMR, 2, 203–210.

    Google Scholar 

  • Clubb R.T., Thanabal V. and Wagner G. (1992b) J. Magn. Reson., 97, 213–217.

    Google Scholar 

  • Fesik S.W. and Zuiderweg E.R.P. (1988) J. Magn. Reson., 78, 588–593.

    Google Scholar 

  • Fink A.L. (1987) In Enzyme Mechanisms (Eds, Page M.I. and Williams A.) Royal Society of Chemistry, London, pp. 159–177.

    Google Scholar 

  • Frenkiel T., Bauer C., Carr M.D., Birdsall B. and Feeney J. (1990) J. Magn. Reson., 90, 420–425.

    Google Scholar 

  • Griesinger C., Otting G., Wüthrich K. and Ernst R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Grzesiek S. and Bax A. (1992) J. Magn. Reson., 96, 432–440.

    Google Scholar 

  • Grzesiek S., Döbeli H., Gentz R., Garotta G., Labhardt A.M. and Bax A. (1992) Biochemistry, 31, 8180–8190.

    Google Scholar 

  • Grzesiek S. and Bax A. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  • Ikura M., Bax A., Clore G.M. and Gronenborn A.M. (1990) J. Am. Chem. Soc., 112, 9020–9022.

    Google Scholar 

  • Kay L.E., Ikura M., Tschudin R. and Bax A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay L.E., Wittekind M., McCoy M.A., Friedrichs M.S. and Mueller L. (1992) J. Magn. Reson., 98, 443–450.

    Google Scholar 

  • Kraut J. (1977) Annu. Rev. Biochem., 46, 331–358.

    Google Scholar 

  • Marion D., Driscoll P.C., Kay L.E., Wingfield P.T., Bax A., Gronenborn A.M. and Clore G.M. (1989a) Biochemistry, 28, 6150–6156.

    Google Scholar 

  • Marion D., Ikura M., Tschudin R. and Bax A. (1989b) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Marion D., Kay L.E., Sparks S.W., Torchia D. and Bax A. (1989c) J. Am. Chem. Soc., 111, 1515–1517.

    Google Scholar 

  • Markland F.S. and Smith E.L. (1971) In The Enzymes, Vol. 3 (Ed, Boyer R.D.) Academic Press, New York, NY, pp. 561–608.

    Google Scholar 

  • Matthews D.A., Alden R.A., Birktoft J.J., Freer S.T. and Kraut J. (1975) J. Biol. Chem., 250, 7120–7126.

    Google Scholar 

  • Messerle B.A., Wider G., Otting G., Weber C. and Wüthrich K. (1989) J. Magn. Reson., 85, 608–613.

    Google Scholar 

  • Nakatani H., Uehara Y. and Hiromi K. (1975) J. Biochem., 78, 611–616.

    Google Scholar 

  • Olejniczak E.T., Xu R.X., Petros A.M. and Fesik S.W. (1992) J. Magn. Reson., 100, 444–450.

    Google Scholar 

  • Pantoliano M.W., Whitlow M., Wood J.F., Rollence M.L., Finzel B.C., Gilliland G.L., Poulos T.L. and Bryan P.N. (1988) Biochemistry, 27, 8311–8317.

    Google Scholar 

  • Philipp M. and Bender M.L. (1971) Proc. Natl. Acad. Sci. USA, 68, 478–480.

    Google Scholar 

  • Philipp M. and Maripuri S. (1981) FEBS Lett., 133, 36–38.

    Google Scholar 

  • Powers R., Gronenborn A.M., Clore G.M. and Bax A. (1991) J. Magn. Reson., 94, 209–213.

    Google Scholar 

  • Robertus J.D., Kraut J., Alden R.A. and Birktoft J.J. (1972) Biochemistry, 11, 4293–4303.

    Google Scholar 

  • Robillard G. and Shulman R.G. (1974) J. Mol. Biol., 86, 541–558.

    Google Scholar 

  • Spera S. and Bax A. (1991) J. Am. Chem. Soc., 113, 5490–5492.

    Google Scholar 

  • Teplyakov A.V., Kuranova I.P., Harutyunyan E., Vainshtein B.K., Frömmel C., Höhne W.E. and Wilson K.S. (1990) J. Mol. Biol., 214, 261–279.

    Google Scholar 

  • Tsilikounas E., Kettner C.A. and Bachovchin W.W. (1992) Biochemistry, 31, 12839–12846.

    Google Scholar 

  • Vuister G.W., Clore G.M., Gronenborn A.M., Powers R., Garrett D.S., Tschudin R. and Bax A. (1993) J. Magn. Reson. Ser. B, 101, 210–213.

    Google Scholar 

  • Wells J.A. and Estell D.A. (1988) Trends Biochem. Sci., 13, 291–297.

    Google Scholar 

  • Wishart D.S., Sykes B.D. and Richards F.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • Wright C.S., Alden R.A. and Kraut J. (1969) Nature, 221, 235–242.

    Google Scholar 

  • Wüthrich K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary material available from F.J.M. van de Ven: the source code (PASCAL) for the computer program described in this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remerowski, M.L., Domke, T., Groenewegen, A. et al. 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus . J Biomol NMR 4, 257–278 (1994). https://doi.org/10.1007/BF00175252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00175252

Keywords

Navigation