Skip to main content
Log in

FINGAR: A new genetic algorithm-based method for fitting NMR data

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A new NMR refinement method, FINGAR (FIt NMR using a Genetic AlgoRithm), has been developed, which allows one to determine a weighted set of structures that best fits measured NMR-derived data. This method shows appreciable advantages over commonly used refinement methods. FINGAR generates an ensemble of conformations whose average reproduces the experimental NMR-derived restraints. In addition, a statistical importance weight is assigned to each of the conformations in the ensemble. As a result, one is not limited to simply presenting an envelope of sampled conformers. Instead, one can subsequently focus on a select few conformers of high weight. This is critical, because many structural analyses depend on using discrete conformations, not simply averages or ensembles. The genetic algorithm used by FINGAR allows one to simultaneously and reliably fit against many restraints, and to generate solutions which include as many conformations with non-zero weights as are necessary to generate the best fit. An added benefit of FINGAR is that because the time-consuming step in this method needs only to be performed once, in the beginning of the first run, numerous FINGAR simulations can be performed rapidly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AltonaC. and SundaralingamM. (1972) J. Am. Chem. Soc., 94, 8205–8212.

    Google Scholar 

  • AtkinsP.W. (1990) Physical Chemistry, Freeman, New York, NY.

    Google Scholar 

  • BonvinA.M.J.J. and BrungerA.T. (1995) J. Mol. Biol., 250, 80–93.

    CAS  PubMed  Google Scholar 

  • BonvinA.M.J.J. and BrungerA.T. (1996) J. Biomol. NMR, 7, 72–76.

    Google Scholar 

  • BorgiasB.A. and JamesT.L. (1988) J. Magn. Reson., 79, 493–512.

    Google Scholar 

  • BrungerA.T. and KarplusM. (1991) Acc. Chem. Reson., 24, 54–61.

    Google Scholar 

  • BrungerA.T., CloreG.M., GronenbornA.M., SaffrichR. and NilgesM. (1993) Science, 261, 328–331.

    Google Scholar 

  • BruschweilerR., BlackledgeM. and ErnstR.R. (1991) J. Biomol. NMR, 1, 3–11.

    Google Scholar 

  • BurkertU. and AllingerN.L. (1982) Molecular Mechanics, American Chemical Society Monographs, Vol. 177, American Chemical Society, Washington, D.C.

    Google Scholar 

  • CloreG.M., NilgesM., SukumaranD.K., BrungerA.T., KarplusM. and GronenbornA.M. (1986) EMBO J., 5, 2729–2735.

    Google Scholar 

  • CrippenG.M. and HavelT.F. (1988) Distance Geometry and Molecular Conformation, Wiley, New York, NY.

    Google Scholar 

  • DaviesD.B. (1978) Prog. NMR Spectrosc., 12, 135–225.

    Google Scholar 

  • FennenJ., TordaA.E. and VanGunsterenW.F. (1995) J. Biomol. NMR, 6, 163–170.

    Google Scholar 

  • GoldbergD.E. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Reading, MA.

    Google Scholar 

  • GonzalezC., StecW., ReynoldsM.A. and JamesT.L. (1995) Biochemistry, 34, 4969–4982.

    Google Scholar 

  • HavelT.F. (1990) Biopolymers, 29, 1565–1585.

    Google Scholar 

  • KarplusM. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • KemminkJ. and ScheekR.M. (1995) J. Biomol. NMR, 5, 33–40.

    Google Scholar 

  • KesslerH., GriesingerC., LautzJ., MullerA., VanGunsterenW.F. and BerendsenH.J.C. (1988) J. Am. Chem. Soc., 110, 3393–3396.

    Google Scholar 

  • KimS.-G., LinL.-J. and ReidB.R. (1992) Biochemistry, 31, 3564–3574.

    Google Scholar 

  • KimY. and PrestegardJ.H. (1990) Protein Struct. Funct. Genet., 8, 377–385.

    Google Scholar 

  • LandisC. and AlluredV.S. (1991) J. Am. Chem. Soc., 113, 9493–9499.

    Google Scholar 

  • LandisC.R., LuckL.L. and WrightJ.M. (1995) J. Magn. Reson., 109, 44–59.

    Google Scholar 

  • LawsonC.L. and HansonR.J. (1974) Solving Least-Squares Problems, Prentice-Hall, New York, NY.

    Google Scholar 

  • LepreC.A., ThomsonJ.A. and MooreJ.M. (1992) FEBS Lett., 302, 89–96.

    Google Scholar 

  • MassartD.L. and KaufmanL. (1983) The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis, Wiley, New York, NY.

    Google Scholar 

  • NanzerA.P., VanGunsterenW.F. and TordaA.E. (1995) J. Biomol. NMR, 6, 313–320.

    Google Scholar 

  • NikiforovichG.V., PrakashO., GehrigC.A. and HrubyV.J. (1993) J. Am. Chem. Soc., 115, 3399–3406.

    Google Scholar 

  • NilgesM., CloreG.M. and GronenbornA.M. (1988) FEBS Lett., 229, 317–324.

    Google Scholar 

  • NilgesM., HabazettlJ., BrungerA.T. and HolakT.A. (1991) J. Mol. Biol., 219, 499–510.

    Google Scholar 

  • PearlmanD.A. and KollmanP.A. (1991) J. Mol. Biol., 220, 457–479.

    Google Scholar 

  • PearlmanD.A. (1994a) J. Biomol. NMR, 4, 1–16.

    Google Scholar 

  • PearlmanD.A. (1994b) J. Biomol. NMR, 4, 279–299.

    Google Scholar 

  • PearlmanD.A., CaseD.A., CaldwellJ.C., RossW.S., CheathamIIIT.E., DeBoltS., FergusonD.M., SeibelG.L. and KollmanP.A. (1995) Comput. Phys. Commun., 91, 1–41.

    Google Scholar 

  • PressW.H., FlanneryB.P., TeukolskyS.A. and VetterlingW.T. (1989) Numerical Recipes, Cambridge University Press, New York, NY.

    Google Scholar 

  • SaengerW. (1984) Principles of Nucleic Acid Structure, Springer, New York, NY.

    Google Scholar 

  • ScheekR.M., VanNulandN.A.J., DeGrootB.L. and AmadeiA. (1995) J. Biomol. NMR, 5, 106–111.

    Google Scholar 

  • SchmitzU., UlyanovN.B., KumarA. and JamesT.L. (1993) J. Mol. Biol., 234, 373–389.

    Google Scholar 

  • SchreiberS.L. (1991) Science, 251, 283–287.

    Google Scholar 

  • TordaA.E., ScheekR.M. and VanGunsterenW.F. (1989) Chem. Phys. Lett., 157, 289–294.

    Google Scholar 

  • TordaA.E., ScheekR.M. and VanGunsterenW.F. (1990) J. Mol. Biol., 214, 223–235.

    Google Scholar 

  • TordaA.E., BrunneR.M., HuberT., KesslerH. and VanGunsterenW.F. (1993) J. Biomol. NMR, 3, 55–66.

    Google Scholar 

  • TroppJ. (1980) J. Chem. Phys., 72, 6035–6043.

    Google Scholar 

  • UlyanovN.B., SchmitzU., KumarA. and JamesT.L. (1995) Biophys. J., 68, 13–24.

    Google Scholar 

  • Van deVenF.J.M. and HilbersC.W. (1988) Eur. J. Biochem., 178, 1–38.

    Google Scholar 

  • VanGunsterenW.F., BrunneR.M., GrosP., VanSchaikR.C., SchifferC.A. and TordaA.E. (1994) Methods Enzymol., 239, 619–654.

    Google Scholar 

  • WagnerG. and WüthrichK. (1979) J. Magn. Reson., 33, 675–680.

    Google Scholar 

  • WüthrichK. (1990) J. Biol. Chem., 265, 22059–22062.

    Google Scholar 

  • YangJ.-X. and HavelT.F. (1993) J. Biomol. NMR, 3, 355–360.

    Google Scholar 

  • YipP. and CaseD.A. (1989) J. Magn. Reson., 83, 643–648.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearlman, D.A. FINGAR: A new genetic algorithm-based method for fitting NMR data. J Biomol NMR 8, 49–66 (1996). https://doi.org/10.1007/BF00198139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198139

Keywords

Navigation