Skip to main content
Log in

Did Consciousness Evolve from Self-Paced Probing of the Environment, and Not from Reflexes?

  • Published:
Brain and Mind

Abstract

It is suggested that the anatomical structures whichmediate consciousness evolved as decisiveembellishments to a (non-conscious) design strategypresent even in the simplest monocellular organisms.Consciousness is thus not the pinnacle of ahierarchy whose base is the primitive reflex, becausereflexes require a nervous system, which the monocelldoes not possess. By postulating that consciousness isintimately connected to self-paced probing of theenvironment, also prominent in prokaryotic behavior,one can make mammalian neuroanatomy amenable todramatically simple rationalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crick, F. and Koch, C.: Consciousness and neuroscience, Cerebral Cortex 8 (1998), 97–107.

    Article  Google Scholar 

  2. Tononi, G. and Edelman, G. M.: Consciousness and complexity, Science 282 (1998), 1846–1851.

    PubMed  Google Scholar 

  3. Frith, C., Perry, R. and Lumer, E.: The neural correlates of conscious experience: An experimental framework, Trends Cogn. Sci. 3 (1999), 105–114.

    PubMed  Google Scholar 

  4. Middleton, F. A. and Strick, P. L.: The cerebellum: An overview, Trends Cogn. Sci. 2 (1998), 305–306.

    Google Scholar 

  5. O'Keefe, J. and Burgess, N.: Theta activity, virtual navigation and the human hippocampus, Trends Cogn. Sci. 3 (1999), 403–406.

    PubMed  Google Scholar 

  6. Swanson, L. W. and Petrovich, G. D.: What is the amygdala? Trends Neurosci. 21 (1998), 323–331.

    PubMed  Google Scholar 

  7. Graybiel, A. M.: The basal ganglia, Trends Neurosci. 18 (1995), 60–64.

    PubMed  Google Scholar 

  8. Carpenter, R. H. S.: Neurophysiol. (Arnold, London, 1996).

  9. Huxley, T. H.: Collected Essays, Vol. 1 (Macmillan, London, 1894).

    Google Scholar 

  10. Cotterill, R. M. J.: Enchanted Looms-Conscious Networks in Brains and Computers (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  11. Crick, F. and Koch, C.: Are we aware of neural activity in primary visual cortex? Nature 375 (1995), 121–123.

    Article  Google Scholar 

  12. Berg, H. C.: Random Walks in Biology (Princeton University Press, Chichester, 1993).

    Google Scholar 

  13. Eisenbach, M.: Control of bacterial chemotaxis, Molecular Microbiol. 20 (1996), 903–910.

    Google Scholar 

  14. Anderson, P. A. V. (ed.): Evolution of the First Nervous Systems, Plenum, New York, 1989.

    Google Scholar 

  15. Jennings, H. S.: The Universe and Life, Yale University Press, New Haven, 1933.

    Google Scholar 

  16. Onions, C.T. (ed.): The Shorter Oxford English Dictionary, Clarendon Press, Oxford, 1962.

    Google Scholar 

  17. Århem, P. and Liljenström, H.: On the coevolution of cognition and consciousness, J. Theor. Biol. 187 (1997), 601–612.

    PubMed  Google Scholar 

  18. Macnab, R. M.: Flagellar switch, in J. A. Hoch and T. J. Silhavy (eds), Two-Component Signal Transduction, ASM Press, Washington, D.C., 1995, pp. 181–199.

    Google Scholar 

  19. Sinnott, E. W.: Cell and Psyche-The Biology of Purpose, North Carolina University Press, Chapel Hill, 1950.

    Google Scholar 

  20. Squire, L. R.: Memory and the hippocampus: A synthesis from the findings with rats, monkeys and humans, Psychol. Rev. 99 (1992), 195–231.

    PubMed  Google Scholar 

  21. Schacter, D. L., Cooper, L. A. and Delaney, S. M.: Implicit memory for unfamiliar objects depends on access to structural descriptions, J. Experimental Psychology: General 119 (1990), 5–24.

    Google Scholar 

  22. Stickgold, R.: Sleep: Off-line memory reprocessing, Trends Cogn. Sci. 2 (1998), 484–492.

    Google Scholar 

  23. Broadbent, D. E.: Perception and Communication, Oxford University Press, Oxford, 1958.

    Google Scholar 

  24. Velmans, M.: Is human information processing conscious? Behav. Brain Sci. 14 (1991), 651–669.

    Google Scholar 

  25. Libet, B., Wright Jr., E. W., Feinstein, B. and Pearl D. K.: Subjective referral of the timing for a conscious sensory experience: A functional role for the somatosensory specific projection system in man, Brain 102 (1979), 193–224.

    PubMed  Google Scholar 

  26. Carpenter, R. H. S.: Choosing where to look, Current Biol. 4 (1994), 341–343.

    Google Scholar 

  27. Goldman-Rakic, P. S. and Selemon, L. D.: New frontiers in basal ganglia research, Trends Neurosci. 13 (1990), 241–244.

    PubMed  Google Scholar 

  28. Stroop, J. R.: Studies of interference in serial verbal reactions, J. Experimental Psychol. 18 (1935), 643–662.

    Google Scholar 

  29. Treisman, A. M.: Verbal cues, language, and meaning in selective attention, Am. J. Psychol. (1964) 77, 206–219.

    PubMed  Google Scholar 

  30. Pardo, J. V., Pardo, P. J., Janer, K.W. and Raichle, M. E.: The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm, Proc. Natl. Acad. Sci. USA 87 (1990), 256–259.

    PubMed  Google Scholar 

  31. Larsson, J., Gulyás, B. and Roland, P. E.: Cortical representation of self-paced finger movement, NeuroReport 7 (1996), 463–468.

    PubMed  Google Scholar 

  32. Carter, C. S., Braver, T. S., Barch, D.M., Botvinick, M. M., Noll, D. and Cohen, J. D.: Anterior cingulate cortex, error detection, and online monitoring of performance, Science 280 (1998), 747–749.

    PubMed  Google Scholar 

  33. Shima, K. and Tanji, J.: Role for cingulate motor area cells in voluntary movement selection based on reward, Science 282 (1998), 1335–1338.

    PubMed  Google Scholar 

  34. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B. and Bushnell, M. C. Pain affect encoded in human anterior cingulate but not somatosensory cortex, Science 277 (1997), 968–971.

    Google Scholar 

  35. Vogt, B. A., Finch, D. M. and Olson, C. R.: Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions, Cerebral Cortex 2 (1992), 435–443.

    PubMed  Google Scholar 

  36. Mel, B. W.: Information processing in dendritic trees, Neural Computation 6 (1994), 1031–1085.

    Google Scholar 

  37. Hammer, M.: The neural basis of associative reward learning in honeybees, Trends Neurosci. 20 (1997), 245–252.

    PubMed  Google Scholar 

  38. Wehr, M. and Laurent, G.: Odour encoding by temporal sequences of firing in oscillating neural assemblies, Nature 384 (1996), 162–166.

    Article  PubMed  Google Scholar 

  39. Cotterill, R. M. J.: On the mechanism of consciousness, J. Consciousness Stud. 4 (1997), 231–247.

    Google Scholar 

  40. Treue, S. and Maunsell, J. H. R.: Attentional modulation of visual motion processing in cortical areas MT and MST, Nature 382 (1996), 539–541.

    PubMed  Google Scholar 

  41. Leopold, D. A. and Logothetis, N. K.: Activity changes in early visual cortex reflect monkeys' percepts during binocular rivalry, Nature 379 (1996), 549–553.

    PubMed  Google Scholar 

  42. Visscher, P. K. and Camazine, S.: Collective decisions and cognition in bees, Nature 397 (1999), 400.

    Google Scholar 

  43. Zeki, S. M. and Shipp, S.: The functional logic of cortical connections, Nature 335 (1988), 311–317.

    PubMed  Google Scholar 

  44. Singer, W.: Development and plasticity of cortical processing architectures, Science 270 (1995), 758–764.

    PubMed  Google Scholar 

  45. Tononi, G., Sporns, O. and Edelman, G. M.: Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system, Cerebral Cortex 2 (1992), 310–335.

    PubMed  Google Scholar 

  46. Houk, J. C.: Cooperative control of limb movements by the motor cortex, brainstem and cerebellum, in R. M. J. Cotterill (ed.), Models of Brain Function, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  47. Arbib, M. A., Schweighofer, N. and Thach, W. T.: Modelling the cerebellum: from adaptation to coordination, in D. J. Glencross and J. P. Piek (eds), Motor Control and Sensory Motor Integration-Issues and Directions, Elsevier, Amsterdam, 1995.

    Google Scholar 

  48. Stein, J.: The posterior parietal cortex, the cerebellum and the visual guidance of movement, in F. W. J. Cody (ed.), Neural Control of Skilled Human Movement, Portland Press, London, 1995.

    Google Scholar 

  49. Yeo, C. H. and Hesslow, G.: Cerebellum and conditioned reflexes, Trends Cognitive Sciences 2 (1998), 322–330.

    Google Scholar 

  50. Asanuma, C., Thach, W. T. and Jones, E. G.: Anatomical evidence for segregated local groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey, Brain Res. Rev. 5 (1983), 267–297.

    Google Scholar 

  51. Jinnai, K., Nambu, A., Yoshida, S. and Tanibuchi, I.: The two separate neuron circuits through the basal ganglia concerning the preparatory or execution processes of motor control, in N. Mano, I. Hamada and M. R. DeLong (eds), Role of the Cerebellum and Basal Ganglia in Voluntary Movement, Excerpta Medica, Amsterdam, 1993.

    Google Scholar 

  52. Anderson, M. E., Inase, M., Buford, J. and Turner, R. S.: Movement and preparatory activity of neurons in pallidal-receiving areas of the monkey thalamus, in N. Mano, I. Hamada and M. R. DeLong (eds), Role of the Cerebellum and Basal Ganglia in Voluntary Movement, Excerpta Medica, Amsterdam, 1993.

    Google Scholar 

  53. Nakano, K., Kayahara, T., Ushiro, H. and Kuwabara, H.: The basal ganglia-thalamo-cortical connections with special reference to output neuronal distributions in macaque monkeys, in C. Ohye, M. Kimura and J. S. McKenzie (eds), The Basal Ganglia V, Plenum, New York, 1996.

    Google Scholar 

  54. Hoover, J. E. and Strick, P. L. The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1, J. Neuroscience 19 (1999), 1446–1463.

    Google Scholar 

  55. de las Heras, S., Gandia, J. A. and Giménez-Amaya, J. M.: The reticular thalamic nucleus and the output nuclei of the basal ganglia: A neuroanatomical view based on hodological studies, in G. Percheron, J. S. McKenzie and J. Féger (eds), The Basal Ganglia IV-New Ideas and Data on Structure and Function, Plenum, New York, 1994.

    Google Scholar 

  56. Steriade, M., Jones, E. G. and McCormick, D. A.: Thalamus-1 Organization and Function, Elsevier, Amsterdam, 1997.

    Google Scholar 

  57. Yeo, C. H., Hardiman, M. J. and Glickstein, M.: Discrete lesions of the cerebellar cortex abolish the classically conditioned nictitating membrane response of the rabbit, Behav. Brain Res. 13 (1984), 261–266.

    PubMed  Google Scholar 

  58. Ito, M., Sakurai, M. and Tongroach, P. Climbing-fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells, J. Physiol. 324 (1982), 113–134.

    PubMed  Google Scholar 

  59. Schwarz, C. and Thier, P.: Binding of signals relevant for action: Towards a hypothesis of the functional role of the pontine nuclei, Trends Neurosci. 22 (1999), 443–451.

    PubMed  Google Scholar 

  60. Miall, R. C.: The cerebellum, predictive control and motor coordination, in M. Glickstein (ed.), Sensory Guidance of Movement, Wiley, Chichester, 1998.

    Google Scholar 

  61. Kawato, M. and Wolpert, D.: Internal models for motor control, in M. Glickstein (ed.), Sensory Guidance of Movement, Wiley, Chichester, 1998.

    Google Scholar 

  62. Melzack, R.: Phantom limbs and the concept of a neuromatrix, Trends Neurosci. 13 (1990), 88–92.

    PubMed  Google Scholar 

  63. Ramachandran, V. S. and Hirstein, W.: The perception of phantom limbs, Brain 121 (1998), 1603–1630.

    PubMed  Google Scholar 

  64. Dum, R. P. and Strick, P. L.: The origin of corticospinal projections from the premotor areas in the frontal lobe, J. Neurosci. 11 (1991), 667–689.

    PubMed  Google Scholar 

  65. Oscarsson, O. and Rosén, I.: Projection to cerebral cortex of large muscle-spindle afferents in forelimb nerves of the cat. J. Physiol. 169 (1963), 924–945.

    PubMed  Google Scholar 

  66. Bundesen, C.: A computational theory of visual attention, Phil. Trans. R. Soc. Lond. B 353 (1998), 1271–1281.

    Google Scholar 

  67. Carpenter, R. H. S.: A neural mechanism that randomises behavior, J. Consciousness Stud. 6 (1999), 13–22.

    Google Scholar 

  68. Crick, F. and Koch, C.: Constraints on cortical and thalamic projections: the no-strong-loop hypothesis, Nature 391 (1998), 245–250.

    PubMed  Google Scholar 

  69. Decety, J.: Do imagined and executed actions share the same neural substrate? Cogn. Brain Res. 3 (1996), 87–93.

    Google Scholar 

  70. Schnitzler, A., Salenius, S., Salmelin, R., Jousmäki, V. and Hari, R.: Involvement of primary motor cortex in motor imagery: A neuromagnetic study, Neuroimage 6 (1997), 201–208.

    PubMed  Google Scholar 

  71. Jeannerod, M.: To act or not to act: Perspectives on the representation of actions, Quarterly J. Experim. Psychol. 52A (1999), 1–29.

    Google Scholar 

  72. Posner, M. I. and Rothbart, M. K.: Attention, self-regulation and consciousness, Phil. Trans. R. Soc. Lond. B 353 (1998), 1915–1927.

    Google Scholar 

  73. Kinomura, S., Larsson, J., Gulyás, B. and Roland, P. E.: Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 271 (1996), 512–515.

    PubMed  Google Scholar 

  74. Graybiel, A. M. and Ragsdale, C. W.: Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylcholineste rase staining, Proc. National Academy of Sciences USA, 75 (1978), 5723–5726.

    Google Scholar 

  75. De Zeeuw, C. I., Simpson, J. I., Hoogenraad, C. C., Galjart, N., Koekkoek, S. K. E. and Ruigrok, T. J. H.: Microcircuitry and function of the inferior olive, Trends Neurosci. 21 (1998), 391–400.

    PubMed  Google Scholar 

  76. Cohen, N. J., Ryan, J., Hunt, C., Romine, L., Wszalek, T. and Nash, C.: Hippocampal system and declarative (relational) memory: Summarizing the data from functional neuroimaging studies, Hippocampus 9 (1999), 83–98.

    PubMed  Google Scholar 

  77. O'Keefe, J. and Nadel, L.: The Hippocampus as a Cognitive Map, Clarendon Press, Oxford, 1978.

    Google Scholar 

  78. Maguire, E. A., Burgess, N., Donnett, J. G., Frackowiak, R. S. J., Frith, C. D. and O'Keefe, J.: Knowing where and getting there: A human navigation network, Science 280 (1998), 921–924.

    PubMed  Google Scholar 

  79. Sharp, P. E.: Comparison of the timing of hippocampal and subicular spatial signals: Implications for path integration, Hippocampus 9 (1999), 158–172.

    PubMed  Google Scholar 

  80. Grillner, S., Christenson, J., Brodin, L., Wallén, P., Hill, R. H., Lansner, A. and Ekeberg, Ö: Locomotor system in lamprey: Neural mechanisms controlling spinal rhythm generation, in J. W. Jacklet (ed.), Neural and Cellular Oscillators, Dekker, New York, 1989.

    Google Scholar 

  81. Grillner, S., Deliagina, T., Ekeberg, Ö., El Manira, A., Hill, R. H., Lansner, A., Orlovsky, G. N. and Wallén, P.: Neural networks that co-ordinate locomotion and body orientation in the lamprey, Trends in Neurosciences 18 (1995), 270–279.

    PubMed  Google Scholar 

  82. Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J. and Maurer, R. G.: Movement analysis in infancy may be useful for early diagnosis of autism, Proc. Natl. Acad. Sci. USA 95 (1998), 13982–13987.

    PubMed  Google Scholar 

  83. Leiner, H. C., Leiner, A. L. and Dow, R. S.: Does the cerebellum contribute to mental skills? Behav. Neurosci. 100 (1986), 443–454.

    PubMed  Google Scholar 

  84. Ivry, R. B. and Baldo, J. V.: Is the cerebellum involved in learning and cognition? Current Opinion in Neurobiol. 2 (1992), 212–216.

    Google Scholar 

  85. Ito, M.: Movement and thought: Identical control mechanisms by the cerebellum, Trends in Neurosci., 16 (1993), 448–450.

    Google Scholar 

  86. Bracke-Tolkmitt, R., Linden, A., Canavan, A. G. M., Rockstroh, B., Scholz, E., Wessel, K. and Diener, H. C.: The cerebellum contributes to mental skills, Behav. Neurosci. 103 (1989), 442–446.

    Article  Google Scholar 

  87. Decety, J., Sjöholm, H., Ryding, E., Stenberg, G. and Ingvar, D. H.: The cerebellum participates in mental activity: Tomographic measurements of regional cerebral blood flow, Brain Res. 535 (1990), 313–317.

    PubMed  Google Scholar 

  88. Wallesch, C.W. and Horn, A.: Long-term effects of cerebellar pathology on cognitive functions, Brain and Cognition 14 (1990), 19–25.

    PubMed  Google Scholar 

  89. Schmahmann, J. D. and Sherman, J. C.: The cerebellar cognitive affective syndrome, Brain 121 (1998), 561–579.

    PubMed  Google Scholar 

  90. Baddeley, A. D. and Hitch, G. J.: (1974). Working memory, in G. H. Bower (ed.), The Psychology of Learning and Motivation, Vol. 8 (Academic Press, New York).

    Google Scholar 

  91. Funahashi, S., Bruce, C. J. and Goldman-Rakic, P. S.: Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex, J. Neurophys. 61 (1989), 331–349.

    Google Scholar 

  92. Goldman-Rakic, P. S.:Working memory and the mind, Scientific American 267(3) (1992), 72–79.

    Google Scholar 

  93. Fuster, J. M.: The prefrontal cortex, mediator of cross-temporal contingencies, Human Neurobiol. 4 (1985), 169–179.

    Google Scholar 

  94. Shadmehr, R. and Holcomb, H. H.: Neural correlates of motor memory consolidation, Science 277 (1997), 821–825.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotterill, R.M.J. Did Consciousness Evolve from Self-Paced Probing of the Environment, and Not from Reflexes?. Brain and Mind 1, 283–298 (2000). https://doi.org/10.1023/A:1010016322550

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010016322550

Navigation