Skip to main content
Log in

Lipopolysaccharide induces distinct alterations in the microtubule cytoskeleton of monocytes

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Microtubules are obligate functional elements of almost all eukaryotic cells. They are involved in a broad range of essential cellular functions and structural changes of this system may trigger cell death. Recently, we have reported that lipopolysaccharides inhibitin vitro microtubule formation due to exclusion of microtubule-associated proteins. The distinct epitopes of lipopolysaccharides responsible for these effects and thein vivo relevance of these data are unknown. Therefore, this study was conducted to elucidate the effects of lipid A, the biologically active motif of lipopolysaccharides, on microtubule formationin vitro and to prove whether lipopolysaccharides affect the microtubule architecture of cultured human monocytesin vivo. Despite a dose- and pH-dependent inhibition of microtubule formation by lipopolysaccharides, inhibition of microtubule assembly could be mimicked by lipid A. Near-infrared two-photon microscopy revealed that human peripheral blood monocytes accumulate lipopolysaccharides. A vesicular distribution pattern of lipopolysaccharides within the monocytes was observed. Confocal laser scanning microscopy demonstrated alterations in the microtubule architecture of monocytes after incubation with lipopolysaccharides. Lipid A seems to be responsible for the observed crosstalk between lipopolysaccharides and microtubule proteins. Furthermore, our data indicate that lipopolysaccharides may affect the microtubule architecture in human monocytes after intracellular accumulation directly. Therefore, we conclude, that the microtubule cytoskeleton is an essential intracellular target for sepsis-relevant bacterial components such as lipopolysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander HR, Doherty GM, Buresh CM, Venzon DJ, Norton JA. A reombinant human receptor antagonist to interleukin 1 improves survival after lethal endotoxemia in mice. J Exp Med. 1991;173:1029-32.

    Article  PubMed  CAS  Google Scholar 

  • Allen JN, Moore SA, Liao Z, Wewers MD. Changes in mononuclear phagocyte microtubules after endotoxin stimulation. 1. Changes in microtubule stability. Am J Resp Cell Mol Biol. 1997a;16:119-26.

    CAS  Google Scholar 

  • Allen JN, Moore SA, Liao Z, Wewers MD. Changes in mono-nuclear phagocyte microtubules after endotoxin stimulation. 2. Changes in microtubule composition. Am J Resp Cell Mol Biol. 1997b;16:127-32.

    CAS  Google Scholar 

  • Blagosklonny MV, Giannakakou P, el Deiry WS, Kingston DG, Higgs PL, Neckers L, Fojo T. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 1997;57:130-35.

    PubMed  CAS  Google Scholar 

  • Böhm KJ, Vater W, Fenske H, Unger E. Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro. Biochim Biophys Acta. 1984; 800:119-26.

    PubMed  Google Scholar 

  • Böhm KJ, Vater W, Russwurm S, Reinhart K, Unger E. Lipopolysaccharide-caused fragmentation of individual microtubules in vitro observed by video-enhanced differential interference contrast microscopy. FEBS Lett. 1998;425 (1):134-6.

    Article  PubMed  Google Scholar 

  • Böhm KJ, Russwurm S, Ghaleb N, Reinhart K, Unger E. Microtubule formation and kinesin-driven microtubule gliding in vitro in the presence of lipopolysaccharide. Cell Biol Int. 1999;23:431-7.

    Article  PubMed  CAS  Google Scholar 

  • Burton PR, Himes RH. Electron microscope studies of pH effects on assembly of tubulin free of associated proteins. Delineation of substructure by tannic acid staining. J Cell Biol. 1978;77:120-33.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin RT, Peterson AA, Haug A, Pownall HJ, McGroarty EJ. A pH titration study on the ionic bridging within lipopolysaccharide aggregates. Biochim Biophys Acta. 1985;821:404-12.

    Article  PubMed  CAS  Google Scholar 

  • Din ZZ, Mukerjee P, Kastowski M, Takayama K. Effect of pH on solubility and ionic state of lipopolysaccharide obtained from the deep rough mutant of Escherichia coli. Biochemistry. 1993;32:4579-86.

    Article  PubMed  CAS  Google Scholar 

  • Ding A, Sanchez E, Tancinco M, Nathan C. Interactions of bacterial lipopolysaccharide with microtubule proteins. J Immunol. 1992;148:2853-8.

    PubMed  CAS  Google Scholar 

  • Drubin D, Kirschner M, Purification of tau protein from brain. Methods Enzymol. 1986;134:156-60.

    PubMed  CAS  Google Scholar 

  • Gerson DF, Kiefer H. Intracellular pH and the cell cycle of mitogen-stimulated murine lymphocytes. J Cell Physiol. 1983;114:132-6.

    Article  PubMed  CAS  Google Scholar 

  • Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res. 1997;57:229-33

    PubMed  CAS  Google Scholar 

  • Hambleton J, McMahon M, DeFranco AL. Activation of Raf-1 and mitogen-activated protein kinase in murine macrophages partially mimics lipopolysaccharide-induced signaling events. J Exp Med. 1995;182:147-54

    Article  PubMed  CAS  Google Scholar 

  • Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol. 1998;10:123-30

    Article  PubMed  CAS  Google Scholar 

  • König, U. Simon, K-J. Halbhuber: 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol Biol. 1996; 42:1181-94

    PubMed  Google Scholar 

  • Kuznetsov SA, Rodionov VI, Gelfand VI, Rosenblat VA. Microtubule-associated protein MAP1 promotes microtubule assembly in vitro. FEBS Lett. 1981;135:241-4.

    Article  PubMed  CAS  Google Scholar 

  • MacRae, TH. Towards an understanding of microtubule function and cell organization: an overview. Biochem Cell Biol. 1992;70:835-41.

    Article  PubMed  CAS  Google Scholar 

  • Mandelkow E, Mandelkow EM. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol. 1995;7:72-81.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura F, Hayashi M. Polymorphism of tubulin assembly. In vitro formation of sheet, twisted ribbon and microtubule. Biochim Biophys Acta. 1976;453:162-75.

    PubMed  CAS  Google Scholar 

  • McKeithan TW, Rosenbaum JL. The biochemistry of microtubules. In: Shay JW, ed. Cell and muscle motility. New York: Plenum Publishing; 1984:255-88.

    Google Scholar 

  • Nahas N, Molski TF, Fernandez GA, Sha'afi RI. Tyrosine phosphorylation and activation of a new mitogen-activated protein (MAP)-kinase cascade in human neutrophils stimulated with various agonists. Biochem J. 1996;318:247-53

    PubMed  CAS  Google Scholar 

  • Orlinska U, Newton RC. Modification of tumor necrosis factor-alpha (TNF-alpha) production by the Na(+)-dependent HCO3-cotransport in lipopolysaccharide-activated human monocytes. Immunopharmacology. 1995;30:41-50.

    Article  PubMed  CAS  Google Scholar 

  • Paul A, Cuenda A, Bryant CE, Murray J, Chilvers ER, Cohen P, Gould GW, Plevin R. Involvement of mitogen-activated protein kinase homologues in the regulation of lipopolysaccharide-mediated induction of cyclo-oxygenase-2 but not nitric oxide synthase in RAW 264.7 macrophages. Cell Signal. 1999;11:491-7.

    Article  PubMed  CAS  Google Scholar 

  • Portoles MT, Ainaga MJ, Municio AM, Pagani R. Intracellular calcium and pH alterations induced by Escherichia coli endotoxin in rat hepatocytes. Biochim Biophys Acta. 1991; 1092:1-6.

    Article  PubMed  CAS  Google Scholar 

  • Risco C, Dominguez JE, Bosch MA, Carrascosa JL. Biochemical and electron microscopy analysis of the endotoxin binding to microtubules in vitro. Mol Cell Biochem. 1993; 121:67-74.

    Article  PubMed  CAS  Google Scholar 

  • Risco C, Pinto da Silva P. Cellular functions during activation and damage by pathogens: immunogold studies of the interaction of bacterial endotoxins with target cells. Microsc Res Tech. 1995;31:141-58.

    Article  PubMed  CAS  Google Scholar 

  • Rozycki MD, Stetzkowski-Marden F, Edelstein SJ. Conservation of tubulin alpha-beta differences in zinc-induced sheets with variations in pH and microtubule-associated protein content. J Ultrastruct Mol Struct Res. 1988;98:48-59.

    PubMed  CAS  Google Scholar 

  • Ruβwurm S, Krause S, Finkelberg L, Schauer U, Lösche W. Generation of reactive oxygen species and activity of platelet-activating factor acetylhydrolase in human monocyte-derived macrophages. Thromb Res. 1994;74:505-14.

    Article  Google Scholar 

  • Schromm AB, Brandenburg K, Loppnow H, Zahringer U, Rietschel ET, Carroll SF, Koch MH, Kusumoto S, Seydel U. The charge of endotoxin molecules influences their conformation and IL-6-inducing capacity. J Immunol. 1998;161(10):5464-71.

    PubMed  CAS  Google Scholar 

  • Sevransky JE, Shaked G, Novogrodsky A, et al. Tyrphostin AG 556 improves survival and reduces multiorgan failure in canine Escherichia coli peritonitis. J Clin Invest. 1997;99: 1966-73.

    Article  PubMed  CAS  Google Scholar 

  • Shelanski ML, Gaskin F, Cantor CR. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA. 1973;70:765-8.

    Article  PubMed  CAS  Google Scholar 

  • Swallow CJ, Grinstein S, Rotstein OD. Regulation of cytoplasmic pH in resident and activated peritoneal macrophages. Biochim Biophys Acta. 1990;1022:203-10.

    Article  PubMed  CAS  Google Scholar 

  • Vertessy BG, Orosz F, Kovacs J, Ovadi J. Alternative binding of two sequential glycolytic enzymes to microtubules. Molecular studies in the phosphofructokinase/aldolase/microtubule system. J Biol Chem. 1997;272:25542-6.

    Article  PubMed  CAS  Google Scholar 

  • von der Mohlen MA, van der Poll T, Jansen J, Levi M, van Deventer SJ. Release of bactericidal/permeability-increasing protein in experimental endotoxemia and clinical sepsis. J Immunol. 1996;156:4969-73.

    PubMed  CAS  Google Scholar 

  • Weingarten MP, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA. 1975;72:1858-62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rußwurm, S., Böhm, K., Mühlig, P. et al. Lipopolysaccharide induces distinct alterations in the microtubule cytoskeleton of monocytes. Cell Biol Toxicol 16, 339–346 (2000). https://doi.org/10.1023/A:1026754631964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026754631964

Navigation