Skip to main content
Log in

Potential Effects of Differential Day-Night Warming in Global Climate Change on Crop Production

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Recent studies on the nature of global warming indicate the likelihood of an asymmetric change in temperature, where night-time minimum temperature increases more rapidly than the day-time maximum temperature. We used a physically based scenario of asymmetric warming combined with climate change scenarios from General Circulation Models (GCMs) outputs and the EPIC (Erosion Productivity Impact Calculator) plant process model to examine the effects of asymmetric temperature change on crop productivity. Our results indicated that the potential effects of global change on crop productivity may be less severe with asymmetric day-night warming than with equal day-night warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, Jr., L. H.: 1990, ‘Plant Responses to Rising Carbon Dioxide and Potential Interactions with Air Pollutants’, J. Environ. Qual. 19, 15-34.

    Google Scholar 

  • Arnold, R. H. and Jones, C. A.: 1987, ‘Soil and Climatic Effects on Crop Productivity and Nutrient Use’, in Soil Fertility and Organic Matter as Critical Components of Protection Systems, Soil Sci. Soc. Amer. Special Publ. 19, 9-17.

    Google Scholar 

  • Brown, R. A. and Rosenberg, N. J.: 1997, ‘Sensitivity of Crop Yield and Water Use to Change in a Range of Climatic Factors and CO2 Concentrations: A Simulation Study Applying EPIC to the Central U.S.A.’, Agricultural and Forest Meteorology 83, 171-203.

    Google Scholar 

  • Cabelguenne, M., Jones, C. A., Marty, J. R., Dyke, P. T., and Williams, J. R.: 1990, ‘Calibration and Validation of EPIC for Crop Rotations in Southern France’, Agric. System. 33, 153-171.

    Google Scholar 

  • Climate Change: 1992, The Supplementary Report of the IPCC Scientific Assessment, prepared by Intergovernmental Panel on Climate Change, World Meteorological Organization/United Nations Environment Programme, Cambridge University Press, p. 200.

  • Cooter, E. J., Edler, B. K., LeDuc, S. K., and Truppi, L.: 1993, ‘Climate Change: Models and Forest Research’, J. Forest 91, 38-43.

    Google Scholar 

  • Cooter, E. J., Richman, M., Lamb, P., and Sampson, D. A.: 1997, ‘The Development of a Climate Change Data Base for Biological Assessments in the Southeastern U.S.’, Clim. Change(in review).

  • Cure, J. D.: 1985, ‘CO2 Doubling Responses: A Crop Survey’, in Strain, B. R. and Cure, J. D. (eds.), Direct Effects of Increasing CO2 on Vegetation, U.S. Dept. of Energy Report DOE/ER-0238, pp. 99-116.

  • Curry, R. B., Peart, R. M., Jones, J.W., Boote, K. J., and Allen, Jr., J. H.: 1990, ‘Simulation as a Tool for Analyzing Crop Response to Climate Change’, Transactions ASAE 33(3), 981-990.

    Google Scholar 

  • Dhakhwa, G. B., Campbell, C. L., LeDuc, S. K., and Cooter, E.J.: 1997, ‘Maize Growth: Assessing the Effects of Global Warming and CO2 Fertilization with Crop Models’, Agric. For. Meteorol. 87(4), 251-270.

    Google Scholar 

  • Dhakhwa, G. B. and Campbell, C. L.: 1997, ‘Impact of Global Climate Change on Crop Production in the Southeastern United States’ (under preparation for publication).

  • Eamus, D. and Jarvis, P. G.: 1989, ‘The Direct Effects of Increases in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees’, Adv. Ecol. Res 90, 1-55.

    Google Scholar 

  • Easterling, W. E., Rosenberg, N. J., McKenney, M. S., Jones, C. A., Dyke, P. T., and Williams, J. R.: 1992, ‘Preparing the Erosion Productivity Impact Calculator (EPIC) Model to Simulate Crop Response to Climate Change and the Direct Effects of CO2’, Agric. For. Meteorol. 59, 17-34.

    Google Scholar 

  • Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R, Parker, D. E., Salinger, M. J., Razuvayev, V., Plummer, N., Jamason, P., and Folland, C. K.: 1997, ‘Maximum and Minimum Trend for the Globe’, Science 277, 364-367.

    Google Scholar 

  • Hansen, J., Sato, M., and Ruedy, R.: 1995, ‘Long-Term Change on Diurnal Temperature Cycle: Implication about Mechanism of Global Climate Change’, Atmos. Res. 37, 175-209.

    Google Scholar 

  • Harvey, D. L.: 1995, ‘Warm Days, Hot Nights’, Nature 377, 15-16.

    Google Scholar 

  • Houghton, J. T., Callander, B. A., and Varney, S. K. (eds.): 1992, Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1991a, ‘Effects of Two and Half Years of Atmospheric CO2 Enrichment on the Root Density Distribution of Three-Year-Old Sour Orange Trees’, Agric. For. Meteorol. 55, 345-349.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1991b, ‘Downward Regulation of Photosynthesis and Growth at High CO2 Levels: No Evidence for Either Phenomenon in Three-Year-Study of Sour Orange Trees’, Plant Physiol. 96, 990-992.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1993a, ‘Effects of Atmospheric CO2 Enrichments on Net Photosynthesis and Dark Respiration Rates of Three Australian Tree Species’, J. Plant Physiol. 141, 16-171.

    Google Scholar 

  • Idso, S. B. and Kimball, B. A.: 1993b, ‘Tree Growth in CO2 Enriched Air and its Implication for Global Carbon Cycles and Maximum Levels of Atmospheric CO2’, Glob. Biochem. Cycles 7, 537-555.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPPC): 1996, Climate Change 1995, The Science of Climate Change, World Meteorological Organization of the United Nations Environment Programme, Cambridge University Press.

  • Karl, T. R., Jones, P. D., Knight, R. W., Kukla, G., Plummer, N., Razuvayev, V., Gallo, K. P., Lindseay, J., Charlston, R. J., and Peterson, T. C.: 1993, ‘Asymmetric Trends of Daily Maximum and Minimum Temperatures’, Bull. Amer. Meteor. Soc. 74(6), 1007-1023.

    Google Scholar 

  • Kimball, B. A.: 1983a, ‘Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 430 Prior Observations’, Agron. J. 75, 1211-1235.

    Google Scholar 

  • Kimball, B. A.: 1983b, ‘Carbon Dioxide and Agricultural Yield. An Assemblage and Analysis of 770 Prior Observations’, WCL Rep. 14, U. S. Water Conservation Laboratory, Phoenix, AZ, p. 71.

    Google Scholar 

  • Mearns, L. O., Katz, R.W., and Schneider, S. H.: 1984, ‘Changes in the Probability of Extreme High Temperature Events with Changes in Mean Global Temperature’, J. Clim. Appl. Meteorol. 23, 1601-1613.

    Google Scholar 

  • Mearns, L. O., Rosenzweig, C., and Goldberg, R.: 1996, ‘The Effects of Changes in Daily and Interannual Variability on CERES-Wheat: A Sensitivity Study’, Clim. Change 32, 257-292.

    Google Scholar 

  • Mooney, H. A, Koch, G. W., and Field, C. B.: 1993, ‘Potential Impacts of Asymmetric Day-Night Temperature Increase on Biotic Systems’, Department of Biological Sciences, Stanford University, Carnegie Institute of Washington, Department of Plant Biology, Stanford, CA 94305.

    Google Scholar 

  • Mooney, H. A. and Koch, G. W.: 1994, ‘The Impact of Rising CO2 Concentration on the Terrestrial Biosphere’, Ambio 23, 74-76.

    Google Scholar 

  • Morison, J. I. L.: 1987, ‘Intercellular CO2 Concentration and Stomatal Response to CO2’, I, in Zeiger, E., Farghuar, G. D., and Cowan, I. R. (eds.), Stomatal Function, Stanford University Press, Stanford, CA.

    Google Scholar 

  • Morison, J. I. L. and Gifford, R. M.: 1983, ‘Stomatal Sensitivity to CO2 and Humidity’, Plant Physiology 71, 789-796.

    Google Scholar 

  • Parry, M. L.: 1990, Climate Change and World Agriculture, Earthscan, London.

    Google Scholar 

  • Pearch, R. W. and Bjorkman, O.: 1983, ‘Physiological Effects’, in Lemon, E. R. (ed.), CO 2 and Plants: The Response of Plants to Rising Levels of Atmospheric CO 2, Westview Press, Boulder, Colorado, pp. 65-105.

    Google Scholar 

  • Patterson, D. T. and Flint, E. P.: 1990, ‘Implication of Increasing CO2 and Climate Change for Plant Community and Competition in Natural and Managed Ecosystems’, in Kimball, B. A., Rosenberg, N. J., and Allen, Jr., L. H. (eds.), Impact of CO 2 , Traces Gases, and Climate Change on Global Agriculture, ASA Special Publication 53, pp. 83-111.

  • Phillips, D. L., Lee, J. J. and Dodson R. F.: 1996, ‘Sensitivity of U.S. Corn Belt to Climate Change and Elevated CO2: I. Corn and Soybean Yields’, Agricultural System 52, 481-502.

    Google Scholar 

  • Porter, H.: 1992, ‘Interspecific Variation in the Growth Response of Plants to an Elevated Ambient CO2 Concentration’, Vegetatio 104-105, 77-97.

    Google Scholar 

  • Richman, M. B. and Lamb, P. J.: 1985, ‘Climatic Pattern Analysis of Three-and Seven Day Summer Rainfall in the Central United States: Some Methodological Considerations and a Regionalization’, J. Clim. Appl. Meteorol. 24, 1325-1343.

    Google Scholar 

  • Rogers, H. H. and Dahlman, R. C.: 1993, ‘Crop Response to CO2 Enrichment’, Vegetatio 104-105, 117-131.

    Google Scholar 

  • Rosenzweig, C.: 1989, ‘Global Climate Change: Predictions and Observations’, Amer. J. Agric. Econ. 71, 1265-1271.

    Google Scholar 

  • Rosenzweig, C., Curry, B., Ritchie, J. T., Jones, J. W., Chou, T. Y. Goldberg, R., and Iglesias, A.: 1994, ‘The Effects of Potential Climate Change on Simulated Grain Crops in the United States’, in Rosenzweig, C. and Iglesias, A. (eds.), Implication of Climate Change for International Agriculture: Crop Modeling Study, EPA 230-B-94-003, Washington D.C.

  • Rosenzweig, C. and Tubiello, F. N.: 1996, Effects of Change in Minimum and Maximum Temperature on Wheat Yield in the Central U.S.: A Simulation Study, NASA-Goddard Institute for Space Studies and Center for Climate System Research, Columbia University.

    Google Scholar 

  • Semenov, M. A. and Porter, J. R.: 1995, ‘Climatic Variability and the Modeling of Crop Yields’, Agric. For. Meteorol. 73, 265-283.

    Google Scholar 

  • Stockle, C. O., Williams J. R., Rosenberg, N. J., and Jones, C. A.: 1992a, ‘A Method for Estimating the Direct and Climate Effects of Rising Atmospheric CO2 on Growth and Yield of Crops. I. Modification of the EPIC Model for Climate Change Analysis’, Agric. Systems 38, 225-238.

    Google Scholar 

  • Stockle, C. O., Williams J. R., Rosenberg, N. J., and Jones, C. A.: 1992b, ‘A Method for Estimating the Direct and Climate Effects of Rising Atmospheric CO2 on Growth and Yield of Crops. II. Sensitivity Analysis at Three Sites in the Midwestern U.S.A.’, Agric. Systems 38, 239-256.

    Google Scholar 

  • Thomson, L. M.: 1975, ‘Weather Variability, Climate Change, and Grain Production’, Science 188, 535-541.

    Google Scholar 

  • Williams, J. R., Jones, C. A., Kiniry, J. R., and Spanel, D. A.: 1989, ‘The EPIC Crop GrowthModel’, Trans. ASAE 32: 497-511.

    Google Scholar 

  • Williams, J. R., Jones, C. A., and Dyke, P. T.: 1990, ‘The EPIC Model. EPIC - Erosion/Productivity Impact Calculator 1. Model Documentation. United States Department of Agriculture - Agricultural Research Service’, Tech. Bull. Number 1768, 3-92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhakhwa, G.B., Campbell, C.L. Potential Effects of Differential Day-Night Warming in Global Climate Change on Crop Production. Climatic Change 40, 647–667 (1998). https://doi.org/10.1023/A:1005339800665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005339800665

Keywords

Navigation