Skip to main content
Log in

A new application of the reciprocity relations to the study of fluid flows through fixed beds

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Creeping flow through an array of spheres with small volume fraction φ is studied theoretically. It is observed that it can be described macroscopically by Brinkman's equation. A generalized version of the reciprocity relations is used to determine the viscous term up to O(φ2) for the case of random configuration and up to O(φ3) for the case of periodic, cubic configurations of the fixed bed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Sanchez-Palencia, Comportement local et macroscopique d'un type de milieux physiques hétérogènes. Intl. J. Engng. Sci. 12 (1974) 331-351.

    Google Scholar 

  2. J.B. Keller, Darcy's law for flows in porous media and the two-space method. In: R.L. Sternberg, A.J. Kalinowski and J.S. Papadakis (eds.) Nonlinear partial differential equations in engineering and applied science. New York: Marcel Dekker (1980) pp. 429-443.

    Google Scholar 

  3. P.M. Adler, Porous media. Boston: Butterworth-Heinemann (1992) 544 pp.

    Google Scholar 

  4. P.G. Saffman, On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50 (1971) 93-101.

    Google Scholar 

  5. S. Haber and R. Mauri, Boundary conditions for Darcy's flow through porous media. Int. J. Multiphase Flow 9 (1983) 561-574.

    Google Scholar 

  6. S. Kim and W.B. Russel, Modelling of porous media by renormalization of the Stokes equations. J. Fluid Mech. 154 (1985) 269-286.

    Google Scholar 

  7. G.S. Beavers and D.C. Joseph, Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1967) 197-207.

    Google Scholar 

  8. E.J. Hinch, An averaged-equation approach to particle interactions in a fluid suspension. J. Fluid Mech. 83 (1977) 695-720.

    Google Scholar 

  9. J. Rubinstein, Effective equations for flow in random porous media with a large number of scales. J. Fluid Mech. 170 (1986) 379-383.

    Google Scholar 

  10. J. Rubinstein, On the macroscopic description of slow viscous flow past a random array of spheres. J. Stat. Phys. 44 (1986) 849-863.

    Google Scholar 

  11. C.K.W. Tam, The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38 (1969) 537-546.

    Google Scholar 

  12. L. Durlofsky and J.F. Brady, Analysis of the Brinkman equation as a model for flow in porous media. Phys. Fluids 30 (1987) 3329-3341.

    Google Scholar 

  13. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures. Amsterdam: North-Holland (1978) 420 pp.

    Google Scholar 

  14. E. Sanchez-Palencia, Nonhomogeneous media and vibration theory. Berlin: Springer-Verlag (1980) 326 pp.

    Google Scholar 

  15. R. Mauri, Dispersion, convection and reaction in porous media. Phys. Fluids A 3 (1991) 743-756.

    Google Scholar 

  16. R. Mauri, Heat and mass transport in random velocity fields with application to dispersion in porous media. J. Eng. Math. 29 (1995) 77-89.

    Google Scholar 

  17. T.S. Lundgren, Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51 (1972) 273-299.

    Google Scholar 

  18. K.F. Freed and M. Muthukumar, On the Stokes problem for a suspension of spheres at finite concentrations. J. Chem. Phys. 68 (1978) 2088-2096.

    Google Scholar 

  19. S. Childress, Viscous flow past a random array of spheres. J. Chem. Phys. 56 (1972) 2527-2539.

    Google Scholar 

  20. I.D. Howells, Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects. J. Fluid Mech. 64 (1974) 449-475.

    Google Scholar 

  21. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317-328.

    Google Scholar 

  22. A.A Zick and G.M. Homsy, Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115 (1982) 13-26.

    Google Scholar 

  23. A.S Sangani and A. Acrivos, Slow flow through a periodic array of spheres. Int. J. Multiphase Flow 8 (1982) 343-360.

    Google Scholar 

  24. M. Zuzovski, P.M. Adler and H. Brenner, Spatially periodic suspensions of convex particles in linear shear flows. Part III. Phys. Fluids A 26 (1983) 1714-1723.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mauri, R. A new application of the reciprocity relations to the study of fluid flows through fixed beds. Journal of Engineering Mathematics 33, 103–112 (1998). https://doi.org/10.1023/A:1004299402988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004299402988

Navigation