Skip to main content
Log in

Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10–12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • avancini, R.M.P., K.K.O. Walden & H.M. Robertson, 1996. The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica (in press).

  • Beach R.F., D. Mills & F.H. Collins, 1989. The structure of ribosomal DNA (rDNA) in Anopheles albimanus (Diptera: Culicidae). Ann. Entomol. Soc. Am. 82: 641–648.

    Google Scholar 

  • Bresinsky L., G.V.L. Wang, T. Humphreys & J. Hung, 1990. The transposable element Uhu from Hawaiian Drosophila-member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 18: 2053–2059.

    Google Scholar 

  • Caizzi R., C. Caggese & S. Pimpinelli, 1993. Bari-1: a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335–345.

    Google Scholar 

  • Collins F.H., M.A. Mendez, M.O. Rasmussen, P.C. Mchaffey, N.J. Besansky & V. Finnerty, 1987. A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex. Am. J. Trop. Med. Hyg. 37: 37–41.

    Google Scholar 

  • Collins F.H. & N.J. Besansky, 1994. Vector biology and the control of malaria in Africa. Science 264: 1874–1875.

    Google Scholar 

  • Doak T.G., F.P. Doerder, C.L. Jahn & G. Herrick, 1994. A proposed superfamily of transposase genes: Transposon-like elements in ciliated protozoa and a common “D35E” motif. Proc. Natl. Acad. Sci. USA. 91: 942–946.

    Google Scholar 

  • Franz G. & C. Savakis, 1991. Minos, a new transposable element from Drosophila hydel, is a member of the Tc1-like family of transposons. Nucleic Acids Research 19: 6646.

    Google Scholar 

  • Genetics Computer Group, 1994. Program Manual for the CCC Package, Version 8.0, 575 Science Drive, Madison, WI 53711, USA.

  • Gehring W.J., 1992. The homeobox in perspective. Trends Biochem. Sci. 17: 277–280.

    Google Scholar 

  • Goodier J.L. & W.S. Davidson, 1994. Te1 transposon-like sequences are widely distributed in salmonids. J. Mol. Biol. 241: 26–34.

    Google Scholar 

  • Henikoff S., 1992. Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 4: 382–388.

    Google Scholar 

  • Kumar V. & F.H. Collins, 1994. A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol. Biol. 3: 41–47.

    Google Scholar 

  • Langin T., P. Capy & M. Daboussi, 1995. The transposable element impala, a fungal member of the Tc1-mariner superfamily. Mol. Gen. Genet. 246: 19–28.

    Google Scholar 

  • Langley C.H., E.A. Montgomery, R. Hudson, N.L. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–236.

    Google Scholar 

  • Loukeris T.G., L. Ioannis, B. Arca, S. Zabalou & C. Savakis, 1995. Gene transfer into the Medfly, Ceratitis capitata, with a Drosophila hydei transposable eiement. Science 270: 2002–2005.

    Google Scholar 

  • Merriman P.J., C.D. Grimes, J. Ambroziak, F.S. Hackett & M.J. Simmons, 1995. S elements: A family of Tc1-like transposons in the genome of Drosophila melanogaster. Genetics 141: 1425–1438.

    Google Scholar 

  • Miller L.H., R.K. Sakai, P. Romans, R.W. Gwadz, P. Kantoff & H.G. Coon, 1987. Stable integration and expression of a bacterial gene in the mosquito Anopheles gambias, Science 237: 779–781.

    Google Scholar 

  • O'Brochta D.A., W.D. Warren, K.J. Savile & P.W. Atkinson, 1996. Hermes, a functional non-Drosophilid insect gene vector from Musca domestica. Genetics 142: 907–914.

    Google Scholar 

  • Petrov D.A., J.L. Schutzman, D.L. Hartl & E.R. Lozovskays, 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA. 92: 8050–8054.

    Google Scholar 

  • Radice A.D., B. Bugaj, D.H.A. Fich & S.W. Emmons, 1994. Widespread occurrence of the Tc1 transposons from teleost fish. Mol. Gen. Genet. 244: 606–612.

    Google Scholar 

  • Robertson H.M. 1995. The Tc1-mariner superfamily of transposons in animals. J. Inseet Physiol. 41: 99–105.

    Google Scholar 

  • Robertson H.M. & D.J. Lampe, 1995. Diatribution of transposable elements in arthropods. Annu. Rev. Entomol. 40: 333–357.

    Google Scholar 

  • Rosenzweig B., L.W. Liao & D. Hirsh, 1983. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Research. 11: 4201–4209.

    Google Scholar 

  • Saitou N & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. and Evol. 4: 406–425.

    Google Scholar 

  • Sambrook J., E.F. Fritsch & T. Manlatis, 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Habor Laboratory. Cold Spring Habor, N.Y.

    Google Scholar 

  • Sarasts M., P.R. Sibbald & A. Wittinghofer, 1990. The P-loop—a common rootif in ATP- and GTP-binding proteins. Trends in Biochemical Sciences. 15: 430–434.

    Google Scholar 

  • Van Leunen H.G.A.M. & R.H.A. Plasterk, 1994. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Research 22: 262–269.

    Google Scholar 

  • Vos J.C., H.G.A.M.Van Leunen & R.H.A. Plasterk, 1993. Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes & Development 7: 1244–1253.

    Google Scholar 

  • Vos I.C., I.D. Baene & R.H.A. Plasterk, 1996. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes & Development 10: 755–761.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, Z., Grossman, G.L., Cornel, A.J. et al. Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus . Genetica 98, 141–147 (1996). https://doi.org/10.1007/BF00121362

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121362

Key words

Navigation