Skip to main content
Log in

Fundamental weak interaction studies using polarised nuclei and ion traps

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Two experiments to search for new physics beyond the standard model for electroweak interactions by measuring correlations between different spin and momentum vectors in nuclear β-decay are discussed. In the first experiment the correlation between the emission asymmetry and the longitudinal polarisation of positrons emitted by polarised nuclei is determined. This type of measurement is sensitive to the presence of right-handed currents but also to possible scalar and tensor-type currents in the weak interaction. The aim of the second experiment is to determine the βν-correlation in β-decay by measuring the energy spectrum of the recoil ions, using a Penning trap and a retardation spectrometer. In this case the focus is on the search for scalar currents in the weak interaction. The results of the experiments presented here are complementary to results from experiments in muon decay and at high-energy colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.A. Quin and T.A. Girard, Phys. Lett. A 229 (1989) 29.

    Google Scholar 

  2. P. Herczeg, in: Precision Tests of the Standard Electroweak Model, ed. P. Langacker (World Scientific, Singapore, 1995) p. 786.

    Google Scholar 

  3. R.N. Mohapatra and S. Nussinov, Phys. Rev. D 39 (1989) 1378.

    Article  ADS  Google Scholar 

  4. M. Hirsch, H.V. Klapdor-Kleingrothaus and O. Panella, Phys. Lett. B 374 (1996) 7.

    Article  ADS  Google Scholar 

  5. A. Jodidio et al., Phys. Rev. D 34 (1986) 1967 and 37 (1988) 237.

    Article  ADS  Google Scholar 

  6. G. Beall et al., Phys. Rev. Lett. 48 (1982) 848.

    Article  ADS  Google Scholar 

  7. G. Ecker and W. Grimus, Nuclear Phys. B 258 (1985) 328.

    Article  ADS  Google Scholar 

  8. F. Abe et al., Phys. Rev. Lett. 74 (1995) 2900.

    Article  ADS  Google Scholar 

  9. S. Abachi et al., Phys. Rev. Lett. 76 (1996) 3271.

    Article  ADS  Google Scholar 

  10. P. Langacker and S. Uma Sankar, Phys. Rev. D 40 (1989) 1569.

    Article  ADS  Google Scholar 

  11. P. Lanacker and R.N. Mohapatra, private communication.

  12. J. Ng, pivate communication.

  13. R.N. Mohapatra, private communication.

  14. P. Herczeg, private communication.

  15. J. Govaerts, Internal Report UCL-IPN-95-R05 (1995).

  16. J. Deutsch, in: Proc. of the SPIN'94 Conference (Bloomington, Indiana, 1994).

  17. P. Langacker, private communication.

  18. R. Prieels et al., Proposal and reports on experiment R-97.06 at the Paul Scherrer Institute.

  19. A.S. Carnoy, J. Deutsch and P.A. Quin, Nuclear Phys. A 568 (1994) 265.

    Article  ADS  Google Scholar 

  20. G. Savard et al., Phys. Rev. Lett. 74 (1995) 1521.

    Article  ADS  Google Scholar 

  21. P.A. Quin et al., Phys. Rev. D 47 (1993) 1247.

    Article  ADS  Google Scholar 

  22. J. Deutsch and P.A. Quin, in: Precision Tests of the Standard Electroweak Model, ed. P. Langacker (World Scientific, Singapore, 1995) p. 706.

    Google Scholar 

  23. J. Sromicki et al., Phys. Rev. C 53 (1996) 932.

    Article  ADS  Google Scholar 

  24. V. Egorov et al., Nuclear Phys. A 621 (1997) 745.

    Article  ADS  Google Scholar 

  25. D. Schardt and K. Riisager, Z. Phys. A 345 (1993) 265.

    Article  Google Scholar 

  26. E.G. Adelberger, Phys. Rev. Lett. 70 (1993) 2856;erratum 71 (1993) 469.

    Article  ADS  Google Scholar 

  27. A.I. Boothroyd, J. Markey and P. Vogel, Phys. Rev. C 29 (1984) 603.

    Article  ADS  Google Scholar 

  28. F. Glück, Nuclear Phys. A 628 (1998) 493.

    Article  ADS  Google Scholar 

  29. C.H. Johnson et al., Phys. Rev. 132 (1963) 1149.

    Article  ADS  Google Scholar 

  30. E.G. Adelberger et al., Phys. Rev. Lett. 83 (1999) 1299.

    Article  ADS  Google Scholar 

  31. N. Severijns et al., Phys. Rev. Lett. 70 (1993) 4047;erratum 73 (1994) 611.

    Article  ADS  Google Scholar 

  32. J. Camps, Ph.D. thesis, University of Leuven (1997) unpublished.

  33. M. Allet et al., Phys. Lett. B 383 (1996) 139.

    Article  ADS  Google Scholar 

  34. E. Thomas, Ph.D. thesis, University of Louvain-la-Neuve (1997) unpublished.

  35. R. Kirchner et al., Nucl. Instrum. Methods A 234 (1985) 224.

    Article  ADS  Google Scholar 

  36. J. van House and P.W. Zitzewitz, Phys. Rev. A 29 (1984) 66.

    Article  ADS  Google Scholar 

  37. REX-ISOLDE Collaboration, Nuclear Phys. A 616 (1997) 29.

    Article  Google Scholar 

  38. G. Savard et al., Phys. Lett. A 158 (1991) 247.

    Article  ADS  Google Scholar 

  39. Ch. Weinmeimer et al., Phys. Lett. B 300 (1993) 210.

    Article  ADS  Google Scholar 

  40. V.M. Lobashev and P.E. Spivak, Nucl. Instrum. Methods A 240 (1985) 305.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Severijns, N., Deutsch, J., Beck, D. et al. Fundamental weak interaction studies using polarised nuclei and ion traps. Hyperfine Interactions 129, 223–236 (2000). https://doi.org/10.1023/A:1012665917625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012665917625

Navigation