Skip to main content
Log in

Nanocrystalline materials – Current research and future directions

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential applications of nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, Inter. Mater. Rev. 40 (1995) 41.

    Google Scholar 

  2. J.M. Silcock, T.J. Heal and H.K. Hardy, J. Inst. Metals 82 (1953–54) 239.

    Google Scholar 

  3. J.B. Cohen, Metall. Trans. 23A (1992) 2685.

    Google Scholar 

  4. R.M. Scanlan, W.A. Fietz and E.F. Koch, J. Appl. Phys. 46 (1975) 2244.

    Article  ADS  Google Scholar 

  5. A.A. Voevodin, S.V. Prasad and J.S. Zabinski, J. Appl. Phys. 82 (1997) 855.

    Article  ADS  Google Scholar 

  6. H. Gleiter, Prog. Mater. Sci. 33 (1989) 223.

    Article  ADS  Google Scholar 

  7. R. Uyeda, Prog. Mater. Sci. 35 (1991) 1.

    Article  Google Scholar 

  8. R.W. Siegel, in: Processing of Metals and Alloys, Materials Science and Technology-A Comprehensive Treatment, Vol. 15, ed. R.W. Cahn (VCH, Weinheim, Germany, 1991) p. 583.

    Google Scholar 

  9. R.W. Siegel, NanoStruct. Mater. 4 (1994) 121.

    Article  Google Scholar 

  10. H. Gleiter, NanoStruct. Mater. 6 (1995) 3.

    Article  Google Scholar 

  11. C. Suryanarayana and C.C. Koch, in: Non-Equilibrium Processing of Materials, ed. C. Suryanarayana (Elsevier Science, Oxford, UK, 1999) p. 313.

    Google Scholar 

  12. C.C. Koch and C. Suryanarayana, in: Microstructure and Properties of Materials, Vol. 2, ed. J.C.M. Li (World Scientific Publishing Corp., Singapore, 2000) p. 359.

    Google Scholar 

  13. R.D. Shull and J.M. Sanchez eds., Nanophases and Nanocrystalline Structures (TMS, Warrendale, PA, 1993).

    Google Scholar 

  14. G.C. Hadjipanayis and R.W. Siegel, eds., Nanophase Materials: Synthesis, Properties, Applications (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994).

    Google Scholar 

  15. C. Suryanarayana, J. Singh and F.H. Froes, eds., Processing and Properties of Nanocrystalline Materials (TMS, Warrendale, PA, 1996).

    Google Scholar 

  16. D.L. Bourell, ed., Synthesis and Processing of Nanocrystalline Powder (TMS, Warrendale, PA, 1996).

    Google Scholar 

  17. A.S. Edelstein and R.C. Cammarata, eds., Nanomaterials: Synthesis, Properties, and Applications (Inst. Physics, Bristol, UK, 1996).

    Google Scholar 

  18. E. Ma, B. Fultz, R.D. Shull, J. Morral and P. Nash, eds., Chemistry and Physics of Nanostructures and Related Non-Equilibrium Materials (TMS, Warrendale, PA, 1997).

    Google Scholar 

  19. C. Suryanarayana and F.H. Froes, Metall. Trans. 23A (1992) 1071.

    Google Scholar 

  20. K. Lu, Mater. Sci. Eng. Reports R 16 (1996) 161.

    Article  Google Scholar 

  21. R.W. Siegel, MRS Bulletin 15(10) (1990) 60.

    Google Scholar 

  22. C.G. Granqvist and R.A. Buhrman, J. Appl. Phys. 47 (1976) 2200.

    Article  ADS  Google Scholar 

  23. H. Konrad, T. Haubold, R. Birringer and H. Gleiter, NanoStruct. Mater. 7 (1996) 605.

    Article  Google Scholar 

  24. W. Chang, G. Skandan, S.C. Danforth, B.H. Kear and H. Hahn, NanoStruct. Mater. 4 (1994) 507.

    Article  MATH  Google Scholar 

  25. C.C. Koch, NanoStruct. Mater. 2 (1993) 109; and 9 (1997) 13.

    Article  Google Scholar 

  26. C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.

    Article  Google Scholar 

  27. R.Z. Valiev, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 275; NanoStruct. Mater. 6 (1995) 73.

    Google Scholar 

  28. Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai, Acta Mater. 47 (1999) 579.

    Article  Google Scholar 

  29. B.H. Kear and L.E. McCandlish, NanoStruct. Mater. 3 (1993) 19; B.H. Kear and P.R. Strutt, NanoStruct. Mater. 6 (1995) 227.

    Article  Google Scholar 

  30. U. Erb, NanoStruct. Mater. 6 (1995) 533.

    Article  Google Scholar 

  31. I. Bakonyi, E. Toth-Kadar, J. Toth, T. Tarnoczi and A. Cziraki, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 465.

    Google Scholar 

  32. D.S. Lashmore and M.P. Dariel, in: Encyclopedia of Materials Science and Engineering, ed. R.W. Cahn (Pergamon Press, Oxford, UK, 1988) suppl. Vol. 1, p. 136.

    Google Scholar 

  33. C. Cheung, D. Wood and U. Erb, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 479.

    Google Scholar 

  34. Y. Yoshizawa, S. Oguma and K.J. Yamauchi, J. Appl. Phys. 64 (1988) 6044.

    Article  ADS  Google Scholar 

  35. K. Lu, in: Processing and Properties of Nanocrystalline Materials, eds. C. Suryanarayana et al. (TMS, Warrendale, PA, 1996) p. 23.

    Google Scholar 

  36. U. Köster, Mater. Sci. Forum 235–238 (1997) 377.

    ADS  Google Scholar 

  37. M.L. Trudeau, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. l53.

    Google Scholar 

  38. R.L. Bickerdike, D. Clark, J.N. Easterbrook, G. Hughes, W.N. Mair, P.G. Partridge and H.C. Ranson, Internat. J. Rapid Solidification 1 (1984–85) 305.

    Google Scholar 

  39. G. Liu, Adv. Mater. 9 (1997) 437.

    Article  Google Scholar 

  40. M.N. Rittner and T. Abraham, JOM 50(1) (1998) 36.

    Google Scholar 

  41. K. Okazaki, in: Advanced Synthesis of Engineered Structural Materials, eds. J.J. Moore et al. (ASM International, Materials Park, OH, 1993) p. 197.

    Google Scholar 

  42. M.J. Mayo, Internat. Mater. Rev. 41 (1996) 85.

    Google Scholar 

  43. R.J. Dowding, J.J. Stiglich and T.S. Sudarshan, in: Advances in Powder Metallurgy & Particulate Materials-1994, Vol. 5, eds. C. Lall and A.J. Neupaver (Metal Powder Industries Federation, Princeton, NJ, 1994) p. 45.

    Google Scholar 

  44. J.R. Groza, in: Non-Equilibrium Processing of Materials, ed. C. Suryanarayana (Elsevier Science, Oxford, UK, 1999) p. 347.

    Google Scholar 

  45. C. Suryanarayana and G.E. Korth, Met. and Mater. 5 (1999) 121.

    Article  Google Scholar 

  46. G.W. Nieman and J.R. Weertman, in: Proc. M.E. Fine Symposium, eds. P.K. Liaw et al. (TMS, Warrendale, PA, 1991) p. 243.

    Google Scholar 

  47. J. Weismüller, J. Löfler, C. Krill, R. Birringer and H. Gleiter, in preparation; quoted in [54].

  48. X.D. Liu, K. Lu, B.Z. Ding and Z.Q. Hu, NanoStruct. Mater. 2 (1993) 581.

    Article  Google Scholar 

  49. M.L. Sui and K. Lu, Mater. Sci. Eng. A179–180 (1994) 541.

    Google Scholar 

  50. X.D. Liu, H.Y. Zhang, K. Lu and Z.Q. Hu, J. Phys. C 6 (1994) L497.

    ADS  Google Scholar 

  51. H.Y. Zhang, K. Lu and Z.Q. Hu, J. Phys. C 7 (1995) 5327.

    Google Scholar 

  52. D. Chen, NanoStruct. Mater. 4 (1994) 753.

    Article  MATH  Google Scholar 

  53. K. Kimoto and I. Nishida, J. Phys. Soc. Jap. 22 (1967) 744.

    Article  ADS  Google Scholar 

  54. J. Weismüller, in: Synthesis and Processing of Nanocrystalline Powder, ed. D.L. Bourell (TMS, Warrendale, PA, 1996) p. 3.

    Google Scholar 

  55. J. Weismüller, J. Löfler and M. Kebler, NanoStruct. Mater. 6 (1995) 105.

    Article  Google Scholar 

  56. R. Birringer, in: Nanophase Materials: Synthesis, Properties, Applications, eds. G.C. Hadjipanayis and R.W. Siegel (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994) p. 157.

    Google Scholar 

  57. R.W. Siegel, in: Materials Interfaces: Atomic Level Structure and Properties, eds. D. Wolf and S. Yip (Chapman & Hall, London, UK, 1992) p. 431.

    Google Scholar 

  58. H. Ouyang, B. Fultz and H. Kuwano, in: Nanophases and Nanocrystalline Structures, eds. R.D. Shull and J.M. Sanchez (TMS, Warrendale, PA, 1993) p. 95. C. Suryanarayana, C.C. Koch / Nanocrystalline materials 43

    Google Scholar 

  59. S.R. Phillpot, D. Wolf and H. Gleiter, J. Appl. Phys. 78 (1995) 847.

    Article  ADS  Google Scholar 

  60. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev and T.G. Langdon, J. Mater. Res. 11 (1996) 1880.

    ADS  Google Scholar 

  61. D.H. Ping, D.X. Li and H.Q. Ye, J. Mater. Sci. Lett. 14 (1995) 1536.

    Article  Google Scholar 

  62. T.R. Malow and C.C. Koch, in: Synthesis and Processing of Nanocrystalline Powder, ed. D.L. Bourell (TMS, Warrendale, PA, 1996) p. 33.

    Google Scholar 

  63. B. Günther, A. Kumpmann and H.D. Kunze, Scripta Metall. Mater. 27 (1992) 833.

    Article  Google Scholar 

  64. J. Eckert, J.C. Holzer and W.L. Johnson, J. Appl. Phys. 73 (1993) 131.

    Article  ADS  Google Scholar 

  65. T.R. Malow and C.C. Koch, Acta Mater. 45 (1997) 2177.

    Article  Google Scholar 

  66. V.Y. Gertsman and R. Birringer, Scripta Metall. Mater. 30 (1994) 577.

    Article  Google Scholar 

  67. C.E. Krill, R. Klein, S. Janes and R. Birringer, Mater. Sci. Forum 179–181 (1995) 443.

    Google Scholar 

  68. H. Hahn, J. Logas and R.S. Averback, J. Mater. Res. 5 (1990) 609.

    ADS  Google Scholar 

  69. J. Horvath, Defect & Diff. Forum 66–69 (1989) 207.

    Google Scholar 

  70. S. Schumacher, R. Birringer, R. Strauss and H. Gleiter, Acta Metall. 37 (1989) 2485.

    Article  Google Scholar 

  71. B.S. Bokstein, H.D. Bröse, L.I. Trusov and T.P. Khvostantseva, NanoStruct. Mater. 6 (1995) 873.

    Article  Google Scholar 

  72. E. Ivanov, Mater. Sci. Forum 88–90 (1992) 475.

    Google Scholar 

  73. R.W. Siegel and H. Hahn, in: Current Trends in the Physics of Materials, ed. M. Youssouff (World Sci. Pub. Co., Singapore, 1987) p. 403.

    Google Scholar 

  74. J. Karch, R. Birringer and H. Gleiter, Nature 330 (1987) 556.

    Article  ADS  Google Scholar 

  75. M.S. Choudry, J.A. Eastman, R.J. DiMelfi and M. Dollar, Scripta Mater. 37 (1997) 843.

    Article  Google Scholar 

  76. K. Lu and M.L. Sui, Acta Metall. Mater. 43 (1995) 3325.

    Article  Google Scholar 

  77. T. Turi and U. Erb, Mater. Sci. & Eng. A204 (1995) 34.

    Article  Google Scholar 

  78. E. Hellstern, H.J. Fecht, Z. Fu and W.L. Johnson, J. Appl. Phys. 65 (1989) 305.

    Article  ADS  Google Scholar 

  79. H.Y. Bai, L. Luo, D. Jin and J.R. Sun, J. Appl. Phys. 79 (1996) 361.

    Article  ADS  Google Scholar 

  80. M.L. Steigerwald and L.E. Brus, Ann. Rev. Mater. Sci. 19 (1989) 471.

    Article  Google Scholar 

  81. G. Skandan, H. Hahn and J.C. Parker, Scripta Metall. Mater. 25 (1991) 2389.

    Article  Google Scholar 

  82. G.D. Stucky and J.E. MacDougall, Science 27 (1990) 669.

    ADS  Google Scholar 

  83. D.G. Morris, in: Mechanical Properties of Nanostructured Materials, Materials Science Foundations, Vol. 2 (Trans. Tech. Publ., Zürich, Switzerland, 1998).

    Google Scholar 

  84. L. Wong, D. Ostrander, U. Erb, G. Palumbo and K.T. Aust, in: Nanophases and Nanocrystalline Structures, eds. R.D. Shull and J.M. Sanchez (TMS, Warrendale, PA, 1993) p. 85.

    Google Scholar 

  85. T.D. Shen, C.C. Koch, T.Y. Tsui and G.M. Pharr, J. Mater. Res. 10 (1995) 2892.

    ADS  Google Scholar 

  86. A.M. El-Sherik, U. Erb, V. Krstic, B. Szpunar, M.J. Aus, G. Palumbo and K.T. Aust, MRS Symp. Proc. 286 (1993) 173.

    Google Scholar 

  87. C.C. Koch, D.G. Morris, K. Lu and A. Inoue, MRS Bulletin 24(2) (1999) 54.

    Google Scholar 

  88. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung and Y.C. Lu, NanoStruct. Mater. 9 (1997) 433.

    Article  Google Scholar 

  89. A. Inoue, N. Nakazato, Y. Kawamura and T. Masumoto, Mater. Sci. & Eng. A179/180 (1994) 654.

    Article  Google Scholar 

  90. S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee, Nature 398 (1999) 684.

    Article  ADS  Google Scholar 

  91. R.W. Siegel, Mater. Sci. Forum 235–238 (1997) 851.

    Google Scholar 

  92. K. Lu, Y.Z. Wang, W.D. Wei and Y.Y. Li, Adv. Cryog. Mater. 38 (1991) 285.

    Google Scholar 

  93. X.D. Liu, B.Z. Ding, Z.Q. Hu, K. Lu and Y.Z. Wang, Physica B 192 (1993) 345.

    Article  ADS  Google Scholar 

  94. X.D. Liu, J.T. Wang and B.Z. Ding, Scripta Metall. Mater. 28 (1993) 59.

    Article  Google Scholar 

  95. J.T. Lee, J.H. Hwang, J.J. Mashek, T.O. Mason, A.E. Miller and R.W. Siegel, J. Mater. Res. 10 (1995) 2295.

    ADS  Google Scholar 

  96. R.N. Viswanath, S. Ramasamy, R. Ramamoorthy, P. Jayavel and T. Nagarajan, NanoStruct. Mater. 6 (1995) 993.

    Article  Google Scholar 

  97. R.H. Yu, X.X. Zhang, J. Tejada, M. Knobel, P. Tiberto and P. Allia, J. Phys. D 28 (1995) 1770.

    Article  ADS  Google Scholar 

  98. C.E. Krill, F. Merzoug, W. Krauss and R. Birringer, NanoStruct. Mater. 9 (1997) 455.

    Article  Google Scholar 

  99. U. Erb, G. Palumbo, B. Szpunar and K.T. Aust, NanoStruct. Mater. 9 (1997) 261.

    Article  Google Scholar 

  100. G. Herzer, Scripta Metall. Mater. 33 (1995) 1741.

    Article  Google Scholar 

  101. A. Makino, A. Inoue and T. Masumoto, NanoStruct. Mater. 6 (1995) 985.

    Article  Google Scholar 

  102. A. Makino, A. Inoue and T. Masumoto, Mater. Trans. Jpn. Inst. Metals 36 (1995) 924.

    Google Scholar 

  103. L. Schultz, J. Wecker and E. Hellstern, J. Appl. Phys. 61 (1987) 3583.

    Article  ADS  Google Scholar 

  104. P.A.I. Smith, J. Ding, R. Street and P.G. McCormick, Scripta Mater. 34 (1996) 61.

    Article  Google Scholar 

  105. R.D. Shull, R.D. McMichael and J.J. Ritter, NanoStruct. Mater. 2 (1993) 205.

    Article  Google Scholar 

  106. R. Rofagha, U. Erb, D. Ostrander, G. Palumbo and K.T. Aust, NanoStruct. Mater. 2 (1993) 1.

    Article  Google Scholar 

  107. D.D. Beck and R.W. Siegel, J. Mater. Res. 7 (1992) 2840.

    ADS  Google Scholar 

  108. L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen and R. Schulz, Mater. Sci. Forum 225–227 (1996) 853.

    Article  Google Scholar 

  109. K.Z. Chen, Z.K. Zhang, Z.L. Cui, D.H. Zuo and D.Z. Yang, NanoStruct. Mater. 8 (1997) 205.

    Article  Google Scholar 

  110. M.L. Trudeau and J.Y. Ying, NanoStruct. Mater. 7 (1996) 245.

    Article  Google Scholar 

  111. G. Das, Ceram. Eng. & Sci. Proc. 17 (1996) 25.

    Google Scholar 

  112. Adv. Mater. Proc. 146(4) (1994) 25.

  113. L.E. McCandlish, V. Kevorkian, K. Jia and T.E. Fischer, in: Advances in Powder Metallurgy & Particulate Materials-1994, Vol. 5, eds. C. Lall and A.J. Neupaver (Metal Powder Industries Federation, Princeton, NJ, 1994) p. 329.

    Google Scholar 

  114. M. Gell, Mater. Sci. & Eng. A 204 (1995) 246.

    Article  Google Scholar 

  115. F. Davanloo, T.J. Lee, H. Park, J.H. You and C.B. Colins, J. Mater. Res. 8 (1993) 3090.

    ADS  Google Scholar 

  116. A. Berkowitz, in: Nanomaterials: Synthesis, Properties, and Applications, eds. A.S. Edelstein and R.C. Cammarata (Institute of Physics, Bristol, 1996) p. 569.

    Google Scholar 

  117. J.H. Judy, MRS Bulletin 15(3) (1990) 63.

    Google Scholar 

  118. M.P. Sharrock, MRS Bulletin 15(3) (1990) 53.

    Google Scholar 

  119. G. Vitulli, E. Pitzalis, A. Verrazzani, P. Pertici, P. Salvadori and G. Martra, Mater. Sci. Forum 235–238 (1997) 929.

    Google Scholar 

  120. J.H. Sinfelt and G.D. Meitzner, Accounts Chem. Res. 26 (1993) 1.

    Article  Google Scholar 

  121. D.R. Rolison, in: Nanomaterials: Synthesis, Properties, and Applications, eds. A.S. Edelstein and R.C. Cammarata (Institute of Physics, Bristol, 1996) p. 305.

    Google Scholar 

  122. P. Tessier, L. Zaluski, A. Zaluska, J.O. Ström-Olsen and R. Schulz, Mater. Sci. Forum 225–227 (1996) 869.

    Google Scholar 

  123. M.L. Wasz, R.B. Schwarz, S. Srinivasan and M.P.S. Kumar, Mater. Res. Soc. Symp. Proc. 393 (1995) 237.

    Google Scholar 

  124. C.H. Smith, in: Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, ed. H.H. Liebermann (Marcel-Dekker, New York, 1993) p. 617.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suryanarayana, C., Koch, C. Nanocrystalline materials – Current research and future directions. Hyperfine Interactions 130, 5–44 (2000). https://doi.org/10.1023/A:1011026900989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011026900989

Navigation