Skip to main content
Log in

First-principles study of static nanoscale friction between MoO3 and MoS2

  • Published:
Journal of Computer-Aided Materials Design

Abstract

The motion of a nanoscale MoO3 crystal on an MoS2 substrate is an ideal case for the study of the effects of microstructure on macroscopic phenomena like friction, because both components of this system can be prepared with atomically flat surfaces. We apply a recently developed real-space density functional theory method to investigate the energetics of sliding an MoO3 crystal on an MoS2 substrate. We then link the results to simple models based on continuum elastic theory, in order to study the mechanical behavior of the oxide crystals under loads that correspond to realistic situations. Based on these results, we extract estimates of the force which must be applied with an atomic force microscope in order to move the oxide crystal on the substrate, for different orientations of the two components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diestler, D.J., Rajasekaran, E. and Zeng, X.C., J. Phys. Chem., B101 (1997) 4992.

    Google Scholar 

  2. Cieplak, M., Smith, E.D. and Robbins, M.O., Science, 265 (1994) 1209.

    Google Scholar 

  3. Harrison, J.A., White, C.T., Colton, R.J. and Brenner, D.W., Phys. Rev., B46 (1992) 9700.

    Google Scholar 

  4. Hohenberg, P. and Kohn, W., Phys. Rev., 136 (1964) B864.

    Google Scholar 

  5. Kohn, W. and Sham, L.J., Phys. Rev., 140 (1965) A1133.

    Google Scholar 

  6. Modine, N.A., Zumbach, G. and Kaxiras, E., Phys. Rev., B55 (1997) 10289.

    Google Scholar 

  7. Zhong, W. and Tomànek, D., Phys. Rev. Lett., 64 (1990) 3054.

    Google Scholar 

  8. Perdew, J. and Zunger, A., Phys. Rev., B23 (1981) 5048.

    Google Scholar 

  9. Hamann, D.R., Schluter, M. and Chiang, C., Phys. Rev. Lett., 43 (1979) 1494.

    Google Scholar 

  10. Rappe, A.M., Rabe, K.M., Kaxiras, E. and Joannopoulos, J. D., Phys. Rev., B41 (1990) 1227.

    Google Scholar 

  11. Briggs, E.L., Sullivan, D.J. and Bernholc, J., Phys. Rev., B54 (1996) 14362.

    Google Scholar 

  12. King-Smith, R.D., Payne, M.C. and Lin, J.-S., Phys. Rev., B44 (1991) 13063.

    Google Scholar 

  13. Eschrig, H. and Bergert, I., Phys. Status Solidi, B90 (1978) 621.

    Google Scholar 

  14. Porezag, D., Frauenheim, T., Köhler, T., Seifert, G. and Kaschner, R., Phys. Rev., B51 (1995) 12947.

    Google Scholar 

  15. Sankey, O.F. and Niklewski, D.J., Phys. Rev., B40 (1989) 3979.

    Google Scholar 

  16. Sheehan, P.E. and Lieber, C.M., Science, 272 (1996) 1158.

    Google Scholar 

  17. Sheehan, P.E. and Lieber, C.M., Nanotechnology, 7 (1996) 236.

    Google Scholar 

  18. The question of determining in general which pairs of materials fit together well, and how precisely the materials will orient themselves relative to each other in the face of slight mismatches like in the MoO3/MoS2system is discussed in Hillier, A.C. and Ward, M.D., Phys. Rev., B54 (1996) 14037.

  19. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Pergamon Press, New York, NY, 1986. Here and in the subsequent analysis, we have set Poisson's ratio to zero.

    Google Scholar 

  20. Hues, S.M., Draper, C.F. and Cotton, R.J., Phys. Rev., B12 (1994) 2211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G.S., Modine, N.A., Waghmare, U.V. et al. First-principles study of static nanoscale friction between MoO3 and MoS2. Journal of Computer-Aided Materials Design 5, 61–71 (1998). https://doi.org/10.1023/A:1008666530448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008666530448

Navigation