Skip to main content
Log in

Monte-Carlo simulation of multiple fracture in the transverse ply of cross-ply graphite-epoxy laminates

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphite-epoxy cross-ply laminates generally show multiple fracture of the transverse ply at higher applied stress. This phenomenon is described by means of a Monte Carlo simulation method based on the assumption that the strength of the transverse ply obeys a two-parameter Weibull distribution function. The main results show that the smaller the scatter of strength of the 90°-ply (i.e. the larger the shape parameter at a constant mean strength of the Weibull distribution), the higher becomes the threshold for the multiple fracture to occur, and the more rapidly the length of 90°-ply segments decreases with increasing applied stress once multiple fracture takes place. The methods to determine the shape and scale parameters of the Weibull distribution for the strength of the 90°-ply proposed by Manderset al. and Peters are proved to be useful even for a small number of test specimens. When the interfacial bond strength between 0°- and 90°-plies is low, saturation of 90°-ply cracking occurs at higher applied stress. The stress-carrying capacity and stiffness of the composites as a whole are reduced by multiple fracture of the 90°-ply. This reduction is more pronounced at increasing applied stress or at a larger number of transverse cracks, especially when the interfacial bond strength is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kelly andW. R. Tyson,J. Mech. Phys. Solids 13 (1965) 329.

    Article  CAS  Google Scholar 

  2. A. Parvizi, K. W. Garret andJ. E. Bailey,J. Mater. Sci. 13 (1978) 195.

    Article  CAS  Google Scholar 

  3. D. L. Flaggs andM. H. Kural,J. Comp. Mater. 16 (1982) 103.

    CAS  Google Scholar 

  4. F. W. Crossman, A. S. D. Wang, ASTM STP 775 (American Society for Testing and Materials, Philadelphia, PA, 1982) p. 118.

    Google Scholar 

  5. P. W. Manders, T. W. Chou, J. R. Jones andJ. W. Rock,J. Mater. Sci. 18 (1983) 2876.

    Article  Google Scholar 

  6. H. Fukunaga, T. W. Chou, P. W. M. Peters andK. Schulte,J. Compos. Mater. 18 (1984) 339.

    Google Scholar 

  7. P. W. M. Peters,ibid. 18 (1984) 545.

    CAS  Google Scholar 

  8. A. Parvizi andJ. E. Bailey,J. Mater. Sci. 13 (1978) 2131.

    Article  CAS  Google Scholar 

  9. A. L. Highsmith, W. W. Stinchcomb andK. L. Reifsnider, VPI-E-81.33, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, November 1981.

    Google Scholar 

  10. K. L. Reifsnider, E. G. Henneke andW. W. Stinchcomb, “Defect-property Relationships in Composite Materials”, ASML-TR-76-81, Part IV (June, 1979).

  11. K. W. Garrett andJ. E. Bailey,J. Mater. Sci. 12 (1977) 157.

    Article  CAS  Google Scholar 

  12. P. W. M. Peters andT. W. Chou,Composites 18 (1987) 40.

    Article  CAS  Google Scholar 

  13. A. S. D. Wang andF. W. Crossman,J. Compos. Mater. Suppl. (1980) 71.

  14. A. S. D. Wang, “Advances in Composite Materials”, Vol. 1 (Pergamon, Oxford, 1980) p. 170.

    Google Scholar 

  15. S. Ochiai andY. Murakami,Trans. Jpn Inst. Metals 18 (1977) 384.

    CAS  Google Scholar 

  16. S. Ochiai andK. Osamura,Z. Metallkde 77 (1986) 255.

    Google Scholar 

  17. Idem, J. Mater. Sci. 21 (1986) 2735.

    Article  Google Scholar 

  18. S. Ochiai, T. Uehara andK. Osamura,ibid. 21 (1986) 1020.

    Article  CAS  Google Scholar 

  19. W. Weibull,J. Appl. Mech. 28 (1951) 293.

    Google Scholar 

  20. J. M. Whitney, C. E. Browning andG. C. Grimes, “Composite Materials in Engineering Design” (ASM, 1972) p. 441.

  21. H. T. Hahn andS. W. Tsai,J. Compos. Mater. 8 (1974) 288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, S., Peters, P.W.M., Schulte, K. et al. Monte-Carlo simulation of multiple fracture in the transverse ply of cross-ply graphite-epoxy laminates. J Mater Sci 26, 5433–5444 (1991). https://doi.org/10.1007/BF02403941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02403941

Keywords

Navigation