Skip to main content
Log in

Oxidation behaviour of the sintered Si3N4-Y2O3-Al2O3 system

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The oxidation behaviour of silicon nitride composed of Si3N4, Y2O3, Al2O3, AlN and TiO2 was investigated in dry and wet air at 1100–1400 °C. The oxidation rates were confirmed to obey the parabolic law. An activation energy of 255 kJ mol−1 was calculated from the Arrhenius plots of the results of oxidation in an air flow. In still air the oxidation rate was larger than that in an air flow, but the oxidation rate in flowing air was not affected by the air flow rate. α-cristobalite and Y2O3·2SiO2 were formed in oxidized surface layers. These crystal phases increased with increasing oxidation temperature. In particular, a higher content of α-cristobalite was obtained in still air oxidation. The existence of water vapour in flowing air greatly promoted the oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Deeley, J. M. Herbert andN. C. Moore,Powd. Metall 8 (1961) 145.

    Google Scholar 

  2. A. Tsuge, K. Nishida andM. Komatsu,J. Amer. Ceram. Soc. 58 (1975) 323.

    Google Scholar 

  3. C. A. Anderson andR. Bratton, “Ceramics Materials for High Temperature Turbines”, Final Technical Report, US Energy Research and Development Adm. Contract EY-76- C-05-5210, August 1977.

  4. A. Tsuge andK. Nishida,Amer. Ceram. Soc. Bull. 57 (1978) 424.

    Google Scholar 

  5. K. Komeya, M. Komatsu, T. Kameda, Y. Goto andA. Tsuge,J. Mater. Sci. 26 (1991) 5513.

    Google Scholar 

  6. F. F. Lange, S. C. Singhal andC. Kuznicki,J. Amer. Ceram. Soc. 60 (1975) 249.

    Google Scholar 

  7. S. C. Singhal,J. Mater. Sci. 11 (1976) 500.

    Google Scholar 

  8. D. Cubiccioti andK. H. Lau,J. Amer. Ceram. Soc. 61 (1978) 512.

    Google Scholar 

  9. C. L. Quackenbush andJ. T. Smith,Amer. Ceram. Soc. Bull. 59 (1980) 533.

    Google Scholar 

  10. Y. Hasegawa, H. Tanaka, M. Tsutsumi andH. Suzuki,Yogyo-Kyokai-Shi 88 (1980) 292.

    Google Scholar 

  11. Y. Hasegawa, T. Yamane, K. Hirota, M. Tsutsumi andH. Suzuki,ibid. 89 (1981) 46.

    Google Scholar 

  12. G. N. Babini, A. Bellosi andP. Vincenzini,J. Amer. Ceram. Soc. 64 (1981) 578.

    Google Scholar 

  13. M. Maeda, K. Nakamura andT. Ohkubo,J. Mater. Sci. Lett. 24 (1989) 2120.

    Google Scholar 

  14. T. Sato, K. Haryu, T. Endo andM. Shimada,J. Mater. Sci. 22 (1987) 2635.

    Google Scholar 

  15. W. C. Tripp andH. C. Graham,J. Amer. Ceram. Soc. 59 (1976) 399.

    Google Scholar 

  16. S. C. Singhal,ibid. 59 (1976) 81.

    Google Scholar 

  17. R. M. Horton,ibid. 52 (1969) 121.

    Google Scholar 

  18. P. Goursat, P. Lortholary, D. Tetard andM. Billy, in “Proceedings of the 7th International Symposium on Reactivity of Solids”, Bristol (1972) p. 315.

  19. G. N. Babini, A. Bellosi andP. Vincenzini,J. Mater. Sci. 19 (1984) 3487.

    Google Scholar 

  20. Y. Hasegawa andK. Hirota,Ceramics 18 (1983) 580.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Concurrent with Kanagawa Academy of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komeya, K., Haruna, Y., Meguro, T. et al. Oxidation behaviour of the sintered Si3N4-Y2O3-Al2O3 system. J Mater Sci 27, 5727–5734 (1992). https://doi.org/10.1007/BF01119729

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01119729

Keywords

Navigation