Skip to main content
Log in

Interfacial mobility and its effect on interlaminar fracture toughness in glass-fibre-reinforced epoxy laminates

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effects of interfacial treatment of glass fibres in glass/epoxy composites were studied through Mode I delamination fracture toughness tests using a double cantilever beam specimen. The treatment of glass fibres with two similar silane coupling agents has been shown to improve the mechanical properties of the composite as a function of the type of coupling agent, γ-aminopropyltriethoxysilane (APS) and γ-aminobutyltriethoxysilane (ABS) have similar chemistry, but differ in mobility (molecular motion) at the coupling agent-epoxy interface. The critical energy release rate, G 1c, for the APS-treated composites (0.59±0.05 kJ m−2) was shown to be higher than that of the ABS-treated one (0.37±0.01 kJ m−2) and also the untreated one (0.31±0.02 kJ m−2). In this case, the bulk structural property appears to be a function of the microscopic interfacial properties including the dynamics of the coupling agent layer. Optical characterization of the fracture surfaces reveal delamination at the epoxy-glass interface for the untreated samples, while the ABS- and APS-treated samples showed less interfacial delamination, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Agarwal and L. J. Broutman, “Analysis and Performance of Fiber Composites”, 2nd Edn (Wiley, New York, 1990).

    Google Scholar 

  2. E. P. Plueddemann“Silane Coupling Agents”, 2nd Edn (Plenum Press, New York, 1991).

    Book  Google Scholar 

  3. R. Holtman, Kunststoffe 55 (1965) 903.

    Google Scholar 

  4. C. E. Knox, in “Handbook of Composites”, edited by G. Lubin (Van Nostrand Reinhold, New York, 1982) Ch. 4.

    Google Scholar 

  5. C. H. Chiang, H. Ishida and J. L. Koenig, J. Coll. Interface Sci. 74 (1980) 396.

    Article  CAS  Google Scholar 

  6. M. E. Schrader, J. Adhesion 2 (1970) 202.

    Article  CAS  Google Scholar 

  7. S. R. Culler, H. Ishida and J. L. Koenig, J. Coll. Interface Sci. 06 (1985) 334.

    Article  Google Scholar 

  8. H. Ishida, Polym. Compos. 5 (1984) 101.

    Article  Google Scholar 

  9. G. E. Maciel and D. W. Sindorf, J. Am. Chem. Soc. 102 (1980) 7606.

    Article  CAS  Google Scholar 

  10. D. E. Leyden, D. S. Kendall and T. G. Waddell, Anal. Chim. Acta 125 (1981) 207.

    Article  Google Scholar 

  11. A. M. Zaper and J. L. Koenig, Polym. Compos. 6 (1985) 156.

    Article  CAS  Google Scholar 

  12. L. S. Penn and T. T. Chiao, in “Handbook of Composites”, edited by G. Lubin (Van Nostrand Reinhold, New York, 1982) Ch. 5.

    Google Scholar 

  13. Y. Suzuki, Z. Maekawa, H. Hamada, A. Yokoyama and T. Sugihara, J. Mater. Sci. 28 (1993) 1725.

    Article  CAS  Google Scholar 

  14. S. L. Bazhenov, Composites 22 (1991) 275.

    Article  CAS  Google Scholar 

  15. “Textile Fibers for Industry”, Owens/Corning Fiberglas Co. (1985), publication 5-TOD8285-C.

  16. F. D. Blum, W. Meesiri, H. J. Kang and J. E. Gambogi, J. Adhes. Sci. Technol. 5 (1991) 479.

    Article  CAS  Google Scholar 

  17. J. Stein, S. J. Valenty, D. V. Brezniak and L. C. Prutzman, Macromolecules 19 (1986) 2291.

    Article  CAS  Google Scholar 

  18. H. J. Kang, W. Meesiri and F. D. Blum, Mater. Sci. Eng. A126 (1990) 265.

    Article  CAS  Google Scholar 

  19. J. G. Dorsey, G. Rutenbery and L. Green, Anal. Chem. 49 (1977) 1144.

    Article  CAS  Google Scholar 

  20. A. Hammerich and F. G. Willebordse, ibid. 45 (1973) 1696.

    Article  CAS  Google Scholar 

  21. H. L. Ewalds and R. J. H. Wanhill, “Fracture Mechanics” (Edwald Arnold, London, 1984).

    Google Scholar 

  22. J. P. Berry, J. Appl. Phys. 34 (1963) 62.

    Article  Google Scholar 

  23. P. S. Chua, S. R. Dai and M. R. Piggott, J. Mater. Sci. 27 (1992) 913.

    Article  CAS  Google Scholar 

  24. C. Y. Yue and M. Y. Quek, ibid. 29 (1994) 2487.

    Article  CAS  Google Scholar 

  25. J. D. Ferry, “Viscoelastic Properties of Polymers”, 3rd Edn (Wiley, New York, 1980).

    Google Scholar 

  26. L. B. Liu, M. Sumita and K. J. Miyasaka, J. Macromol. Sci. Phys. B28 (1989) 309.

    Article  CAS  Google Scholar 

  27. A. A. Parker, J. J. Marcinko, Y. T. Shieh, D. P. Hedrick and W. M. Ritchey, J. Appl. Polym. Sci. 40 (1990) 1717.

    Article  CAS  Google Scholar 

  28. A. P. Legrand, N. Lecomte, A. Vidal, B. Haidar and E. Papirer, ibid. 46 (1992) 2223.

    Article  CAS  Google Scholar 

  29. T. P. Huijgen, H. Angad Gaur, T. L. Weeding, L. W. Jenneskens, H. E. C. Schuurs, W. G. B. Huysmans and W. S. Veeman, Macromolecules 23 (1990) 3063.

    Article  CAS  Google Scholar 

  30. A. A. Parker, M. Y. Tsai, G. Biresaw, T. T. Stanzione, G. H. Armstrong and J. J. Marcinko, Mater. Res. Soc. Symp. Proc. 249 (1992) 273.

    Article  CAS  Google Scholar 

  31. F. D. Blum, in “Annual Reports of NMR Spectroscopy”, Vol. 28, edited by I. Ando and G. A. Webb (Academic Press, London, 1994) p. 277.

    Google Scholar 

  32. H. J. Kang and F. D. Blum, J. Phys. Chem. 95 (1991) 9391.

    Article  CAS  Google Scholar 

  33. J. E. Gambogi and F. D. Blum, Macromolecules 25 (1992) 4526.

    Article  CAS  Google Scholar 

  34. J. H. Freed, in “Spin Labelling: Theory and Applications”, Vol. 1, edited by L. Berliner (Academic Press, New York, 1976) 53.

    Chapter  Google Scholar 

  35. D. J. Schneider and J. H. Freed, in “Spin Labelling”, Vol. 8, edited by L. Berliner (Academic Press, New York, 1989) p. 1.

    Google Scholar 

  36. S. Jagannathan, F. D. Blum and C. F. Polnaszek, J. Chem. Inf. Comput. Sci. 27 (1987) 167.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, T.W.H., Blum, F.D. Interfacial mobility and its effect on interlaminar fracture toughness in glass-fibre-reinforced epoxy laminates. JOURNAL OF MATERIALS SCIENCE 31, 5231–5238 (1996). https://doi.org/10.1007/BF00355930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355930

Keywords

Navigation