Skip to main content
Log in

The influence of collision energy and strain accumulation on the kinetics of mechanical alloying

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The kinetics of mechanical alloying have been investigated by examining the effect that ball mass has on the rate at which titanium carbide forms from the elements. By varying the ball density while keeping the ball diameter and the charge ratio constant, the collision energy was independently controlled. Grinding media with a density from 3.8 g cm-3 (agate) to 16.4 g cm-3 (tungsten carbide) were used. The reaction rate increases exponentially with ball mass until a critical level is reached, which is determined by the induced temperature rise. Above this level, collisions of higher energy have no advantage. It is also shown that the reaction rate increases exponentially with the rate at which strain accumulates in the reactants. It is suggested that the strain accumulation rate in mechanically induced reactions is analogous to temperature in thermally induced chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. BENJAMIN and T. E. VOLIN, Metall. Trans. 5 (1974) 1929.

    Google Scholar 

  2. C. C. KOCH, O. B. CAVIN, C. McKAMEY and J. O. SCARBROUGH, Appl. Phys. Lett. 43 (1983) 1017.

    Google Scholar 

  3. R. M. DAVIS, B. McDERMOTT and C. C. KOCH, Metall. Trans. 19A (1988) 2867.

    Google Scholar 

  4. D. R. MAURICE and T. H. COURTNEY, ibid. 21A (1990) 289.

    Google Scholar 

  5. Idem, ibid. 26A (1995) 2431.

  6. Idem, ibid. 26A (1995) 2437.

  7. B. J. M. AIKIN and T. H. COURTNEY, ibid. 24A (1993) 647.

    Google Scholar 

  8. Idem, ibid. 24A (1993) 2465.

  9. T. H. COURTNEY, Rev. Partic. Mater. 2 (1994) 63.

    Google Scholar 

  10. P. G. McCORMICK, H. HUANG, M. P. DALLIMORE, J. DING and J. PAN, in “Proceedings of the 2nd International Conference on Structural Applications of Mechanical Alloying”, edited by J. J. DeBarbadillo, F. H. Froes and R. Schwarz (ASM International, Materials Park, OH, 1993) p. 45.

    Google Scholar 

  11. N. BURGIO, A. IASONNA, M. MAGINI, S. MARTELLI and F. PADELLA, Il Nuovo Cimento 13 (1991) 459.

    Google Scholar 

  12. E. GAFFET, Mater. Sci. Eng. A132 (1991) 181.

    Google Scholar 

  13. M. ABDELLAOUI and E. GAFFET, J. Alloys Compounds 209 (1994) 351.

    Google Scholar 

  14. Idem, Acta Mater. 44 (1996) 725.

    Google Scholar 

  15. B. J. M. AIKIN, T. H. COURTNEY and D. R. MAURICE, Mater. Sci. Eng. A147 (1991) 229.

    Google Scholar 

  16. J. S. FORRESTER and G. B. SCHAFFER, Metall. Trans. 26A (1995) 725.

    Google Scholar 

  17. N. J. CALOS, J. S. FORRESTER and G. B. SCHAFFER, J. Solid State Chem., 122 (1996) 273.

    Google Scholar 

  18. G. B. SCHAFFER and P. G. McCORMICK, Metall. Trans. 23A (1992) 1285.

    Google Scholar 

  19. M. MAGINI, S. MARTELLI and F. PADELLA, in “Proceedings of the 2nd International Conference on Structural Applications of Mechanical Alloying”, edited by J. J. DeBarbadillo, F. H. Froes and R. Schwarz (ASM International, Materials Park, OH, 1993) p. 439.

    Google Scholar 

  20. P. LeBRUN, L. FROYEN and L. DELAEY, Mater. Sci. Eng. A161 (1993) 75.

    Google Scholar 

  21. N. A. WATERMAN and M. F. ASHBY (eds), “Elsevier Materials Selector”, Vol. 2 (Elsevier Applied Science, London, 1991).

    Google Scholar 

  22. P. KILLEN, School of Physics, Queensland University of Technology, Australia, personal communication 1992.

    Google Scholar 

  23. J. I. LANGFORD, R. DELHEZ, Th. H. deKEIJSER and E. J. MITTEMEIJER, Aust. J. Phys. 41 (1988) 173.

    Google Scholar 

  24. G. Le CAËR, E. BAUER-GROSSE, A. PIANELLI, E. BOUZY and P. MATTEAZZI, J. Mater. Sci. 25 (1990) 4726.

    Google Scholar 

  25. H. Baker (ed) “ASM Handbook”, 10th Edn, Vol. 3 (ASM International, Metals Park, OH, 1992).

    Google Scholar 

  26. G. B. SCHAFFER and J. S. FORRESTER, in preparation.

  27. C. G. KNIGHT, M. V. SWAIN and M. M. CHAUDHRI, J. Mater. Sci. 12 (1977) 1573.

    Google Scholar 

  28. A. M. HARRIS, PhD thesis, The University of Queensland (1996).

  29. R. B. SCHWARZ and C. C. KOCH, Appl. Phys. Lett. 49 (1986) 146.

    Article  Google Scholar 

  30. J. S. FORRESTER, PGDipSci thesis, The University of Queensland (1995).

  31. G. B. SCHAFFER and P. G. McCORMICK, Metall. Trans. 22A (1991) 3019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffer, G.B., Forrester, J.S. The influence of collision energy and strain accumulation on the kinetics of mechanical alloying. Journal of Materials Science 32, 3157–3162 (1997). https://doi.org/10.1023/A:1018646616814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018646616814

Keywords

Navigation