Skip to main content
Log in

Transverse tensile behaviour of fibre reinforced titanium metal matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Four Ti MMCs have been tested in transverse tension, at ambient temperature and 600 °C. Generally, mechanical properties are reduced compared to monolithic Ti alloys. Transverse Young's modulus is, however, higher than in monolithic alloys, as a result of constraint of the matrix by the fibres.

MMC proportional limits are associated with the onset of interfacial failure. Fibre coating cracking and longitudinal fibre splitting may also contribute to MMC yield and the associated acoustic emission peak. The fibre/matrix interface in IMI 834/SM1140+ appears to be weaker than in the other MMCs, resulting in a lower proportional limit and less acoustic emission. Final failure of the MMCs is generally via ductile shearing of matrix ligaments. The exception to this is IMI 834/SM1140+ in which the matrix fails in a brittle manner. This causes poor transverse tensile strength and failure strain in this MMC.

A model to predict the MMC proportional limit, previously proposed by Jansson et al., has been modified to take account of the tensile strength of the fibre/matrix interface. The model previously used by Jansson et al. to predict the transverse tensile strength is acceptably accurate provided that the area fraction of matrix appearing on fracture surfaces is accurately determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Robertson in “Characterisation of Fibre Reinforced Titanium Matrix Composites” - AGARD Report No. 796 (NATO Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, 1994) pp. 7.1–7.8.

    Google Scholar 

  2. M. P. Thomas, J. G. Robertson and M. R. Winstone, J . Mat. Sci. Vol. 33 (1998) pp. 3607–3614.

    Google Scholar 

  3. M. P. Thomas and M. R. Winstone, Scripta Materialia Vol. 37 (1997) pp. 1855–1862.

    Google Scholar 

  4. M. P. Thomas and M. R. Winstone, “LongitudinalYielding Behaviour of SiC Fibre Reinforced Titanium Matrix Composites,” To be published in Composites Science & Technology, 1998.

  5. W. S. Johnson, S. J. Lubowinski and A. L. Highsmith, in “Thermal and Mechanical Behaviour of Metal Matrix and Ceramic Matrix Composites,” ASTM STP-1080. Edited by: J. M. Kennedy, H. H. Moeller and W. S. Johnson (American Society for Testing and Materials, Philadelphia 1990) pp. 193–218.

    Google Scholar 

  6. B. S. Majumdar and G. M. Newaz, Phil. Mag. Vol. 66 (1992) pp. 187–212.

    Google Scholar 

  7. J. G. Bakuckas, W. H. Prosser and W. S. Johnson, J. Comp. Mat. Vol. 28 (1994) pp. 305–328.

    Google Scholar 

  8. D. S. Li and M. R. Wisnom, J. Comp. Mat. Vol. 30 (1996) pp. 561–588.

    Google Scholar 

  9. R. A. Shatwell, Mat. Sci. Tech. Vol. 10 (1994) pp. 552–557.

    Google Scholar 

  10. C. L. Mantell, in “Carbon and Graphite Handbook” (Interscience Publishers, London 1968) pp. 22–27.

    Google Scholar 

  11. J. E. Hove and W. C. Riley, in “Ceramics for Advanced Technologies” (John Wiley & Son, London 1965) pp. 17, 23, 61, 158.

    Google Scholar 

  12. K. L. Choy, J. F. Durodola, B. Derby and C. Ruiz, Composites Vol. 26 (1995) pp. 531–539.

    Google Scholar 

  13. S. Jansson, H. E. DÈve and A. G. Evans, Met. Trans. Vol. 22A (1991) pp. 2975–2984.

    Google Scholar 

  14. P. J. Cotterill and P. Bowen, J. Mat. Sci. Vol. 31 (1996) pp. 5897–5905.

    Google Scholar 

  15. J. M. Yang, S. M. Jeng and C. J. Yang, Mat. Sci. Eng. Vol. A138 (1991) pp. 155–167.

    Google Scholar 

  16. L. Molliex, J. P. Favre, A. Vassel and M. Rabinovitch, J. Mat. Sci. Vol. 29 (1994) pp. 6033.

    Google Scholar 

  17. Y. Lepetitcorps, R. Pailler and R. Naslain, Comp. Sci. Tech. Vol. 35 (1989) pp. 207–214.

    Google Scholar 

  18. M. C. Watson and T. W. Clyne, in “Titanium '92: Science and Technology.” Edited by: F. H. Froes and I. Caplan (The Minerals, Metals and Materials Society, Pennsylvania 1993) pp. 2569–2576.

    Google Scholar 

  19. Z. X. Guo and B. Derby in “Titanium '92: Science and Technology.” Edited by: F. H. Froes and I. Caplan (The Minerals, Metals and Materials Society, Pennsylvania, 1993) pp. 2633–2640.

    Google Scholar 

  20. M. C. Watson and T. W. Clyne, Acta Met. & Mat. Vol. 40 (1992) pp. 141–148.

    Google Scholar 

  21. D. B. Miracle, A. F. Kalton and T. W. Clyne, in “Proceedings of ICCM-11: The Eleventh International Conference on Composite Materials.” Vol. III Edited by: M. L. Scott (Australian Composite Structures Society, Melbourne, 1997) pp. 317–326

    Google Scholar 

  22. D. Upadhyaya, B. Brydson, C. M. Ward-Close, P. Tsakiropoulos and F. H. Froes, Mat. Sci. Tech. Vol.10 (1994) pp. 797–806.

    Google Scholar 

  23. T. P. Gabb, J. Gayda and R. A. Mackay, J. Comp. Mat. Vol. 24 (1990) pp. 667–686.

    Google Scholar 

  24. D. E. Morel, in “Titanium '92: Science andTechnology.” Edited by: F. H. Froes and I. Caplan (The Minerals, Metals and Materials Society, Pennsylvania, 1993) pp. 2553–2560.

    Google Scholar 

  25. C. Jones, C. J. Kiely and S. S. Wang, J. Mat. Res. Vol. 5 (1990) pp. 1435–1442.

    Google Scholar 

  26. A. P. Woodfield, M. H. Loretto and R. E. Smallman, in “Titanium: Science and Technology.” Vol. 3. Edited by: G. Lutjering, U. Zwicker and W. Bunk (Deutsche Gesellschaft fur Metallkunde E. V., Oberursel, Germany, 1985) pp. 1527–1534.

    Google Scholar 

  27. B. S. Majumdar, G. M. Newaz, F. W. Brust and J. R. Ellis, in “Titanium '92: Science and Technology.” Edited by: F. H. Froes and I. Caplan (The Minerals, Metals and Materials Society, Pennsylvania, 1993) pp. 2609–2616.

    Google Scholar 

  28. D. B. Gundel, B. S. Majumdar and D. B. Miracle, Scripta Materialia Vol. 33 (1995) pp. 2057–2065.

    Google Scholar 

  29. S. G. Warrier, B. S. Majumdar, D. B. Gundel and D. B. Miracle, Acta Materialia Vol. 45 (1997) pp. 3469–3480.

    Google Scholar 

  30. M. P. Thomas, J. G. Robertson, B. Morgan and M. R. Winstone, in “Titanium '95.” Vol. III. Edited by: P. A. Blenkinsop et al (Institute of Materials, London, 1996) pp. 2811–2818.

    Google Scholar 

  31. W. Wei, J. Mat. Sci. Vol. 27 (1992) pp. 1801–1810.

    Google Scholar 

  32. N. Legrand, J. Grison and L. Remy in “Fatigue '96: Proceedings of the Sixth International Fatigue Congress.” Vol. III. Edited by: G. Lutjering and H. Nowack (Pergamon Press, Oxford, 1996) pp. 1451–1456.

    Google Scholar 

  33. M. G. Eggleston and A. M. Ritter, Met. & Mat. Trans. Vol. 26A (1995) pp. 2733–2744.

    Google Scholar 

  34. E. W. Collings, in “The Physical Metallurgy of Titanium Alloys.” (ASM, Ohio, 1984) pp. 116.

    Google Scholar 

  35. K. S. Chan and D. L. Davidson, Eng. Fract. Mech. Vol. 33 (1989) pp. 451–466.

    Google Scholar 

  36. W. S. Johnson, in “Damage Development in Titanium Metal Matrix Composites Subjected to Cyclic Loading,” NASA Technical Memorandum 107597 (NASA Langley, Virginia, 1992).

    Google Scholar 

  37. J. Gayda, T. P. Gabb and A. D. Freed, “The Isothermal Fatigue Behaviour of a Unidirectional SiC/Ti Composite and the Ti Alloy Matrix,” NASA Technical Memorandum 101984 (NASA Lewis Research Center, Ohio, April 1989).

    Google Scholar 

  38. W. S. Johnson, R. A. Naik and W. D. Pollock, in “Fatigue '90” (Materials and Component Engineering Publications Ltd., Birmingham 1991) pp. 841–850.

    Google Scholar 

  39. S. Mall and P. G. Ermer, J. Comp. Mat. Vol. 25 (1991) pp. 1668–1686.

    Google Scholar 

  40. P. Rangaswamy, M. A. M. Bourke, P. K. Wright, N. Jayaraman, E. Kartzmark and J. A. Roberts, Mat. Sci. Eng. Vol. A224 (1997) pp. 200–209.

    Google Scholar 

  41. J. Jo, S. Parthasarathi, V. Ramnarayan, R. E. Swanson and J. Parnell, in “Residual Stresses in Composites: Measurement, Modelling and Effects on Thermo-Mechanical Behaviour.” Edited by: E. V. Barrera and I. Dutta (The Minerals, Metals & Materials Society, Pennsylvania, 1993) pp. 219–226.

    Google Scholar 

  42. G. F. Harrison, B. Morgan, P. H. Tranter and M. R. Winstone, in “Characterisation of Fibre Reinforced Titanium Matrix Composites,” AGARD Report No. 796 (NATO-AGARD, Neuilly-sur-Seine, France, 1994) pp. 14.1–14.15.

    Google Scholar 

  43. J. B. Brayshaw and M. J. Pindera, in “Mechanics of Composites at Elevated and Cryogenic Temperatures” (ASME, New York, 1991) pp. 23–37.

    Google Scholar 

  44. J. F. Durodola and C. Ruiz, in “Advanced Composites '93: International Conference on Advanced Composite Materials.” Edited by: T. Chandra and A. K. Dhingra (The Minerals, Metals and Materials Society, Pennsylvania, 1993) pp. 1133–1139.

    Google Scholar 

  45. D. Upadhyaya, D. M. Blackletter and F. H. Froes, in “Titanium '92: Science and Technology,” Vol. III. Edited by: F. H. Froes and I. L. Caplan, (The Minerals, Metals and Materials Society, Pennsylvania, 1993) pp. 2537–2543.

    Google Scholar 

  46. J. Gayda and T. P. Gabb, Int. J. Fat. Vol. 14 (1992) pp. 14–20.

    Google Scholar 

  47. G. E. Dieter, in “Mechanical Metallurgy” (McGraw-Hill, London 1984) pp. 80.

    Google Scholar 

  48. S. Jansson, D. J. Dal Bello and F. A. Leckie, Act Met. & Mat. Vol. 42 (1994) pp. 4015–4024.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

THOMAS, M.P., WINSTONE, M.R. Transverse tensile behaviour of fibre reinforced titanium metal matrix composites. Journal of Materials Science 33, 5499–5508 (1998). https://doi.org/10.1023/A:1004435325205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004435325205

Keywords

Navigation