Skip to main content
Log in

Microstructural and mechanical stability of Cu-6 wt. % Ag alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructural and mechanical stability of Cu-6 wt. % Ag alloy obtained by cold rolling combined with intermediate heat treatments have been investigated. The stress-strain responses and fracture behavior of Cu-6 wt. % Ag alloy were examined and correlated with the microstructural change caused by thermo-mechanical treatments. The deformation bands stabilized by silver precipitates were observed in heavily rolled Cu-6 wt. % Ag alloy. The highly deformed microstructure stabilized by silver filament was observed to be unstable at temperatures above 200 °C. The strength of Cu-6wt.%Ag alloys were found to decrease remarkably if they were heat-treated above 300°C. The fracture surfaces of Cu-Ag two phase alloys showed typical ductile type fracture. The electrical conductivity did not change appreciably up to the aging temperature of 200°C and increased rapidly at temperatures above 300°C. The increase of the conductivity and the decrease of the strength can be associated with the microstructural coarsening of heavily deformed linear band structure. The difference of the UTS and the conductivity between the rolling direction and the direction perpendicular to the rolling direction (on the rolling plane) were found to be relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Benghalem and D. G. Morris, Acta Mater. 45 (1997) 397.

    Google Scholar 

  2. S. I. Hong and M. A. Hill, ibid. 46 (1998) 4111.

    Google Scholar 

  3. S. I. Hong, M. A. Hill, Y. Sakai, J. T. Wood and J. D. Embury, Acta Metall. Mater. 43 (1995) 3313.

    Google Scholar 

  4. S. I. Hong and M. A. Hill, Mater. Sci. Eng. A264 (1999) 151.

    Google Scholar 

  5. S. I. Hong, Scripta Mater. 39 (1998) 1685.

    Google Scholar 

  6. J. D. Verhoeven, L. S. Chumbley, F. C. Laabs and W. A. Spitizig, Acta Metall. Mater. 39 (1991) 2825.

    Google Scholar 

  7. U. Hangen and D. Raabe, ibid. 43 (1995) 4075.

    Google Scholar 

  8. P. D. Funkenbusch and T. H. Courtney, Metall. Trans. 18 (1987) 1249.

    Google Scholar 

  9. Y. Sakai and H. J. Schneider-muntau, Acta Mater. 45 (1997) 1017.

    Google Scholar 

  10. Y. Sakai, K. Inoue and Maeda, Acta Metall. Mater. 43 (1995) 1517.

    Google Scholar 

  11. Y. Sakai, K. Inoue, T. Asano, H. Wada and H. Maeda, Appl. Phys. Lett. 59 (1991) 2965.

    Google Scholar 

  12. D. Kuhlmann-wilsdorf, Acta Mater. 47 (1999) 1697.

    Google Scholar 

  13. S. S. Kulkarni, E. A. Starke JR. and D. Kuhlmann-wilsdorf, ibid. 46 (1998) 5283.

    Google Scholar 

  14. M. Hatherly and A. S. Malin, Metal Technol. 7 (1979) 308.

    Google Scholar 

  15. A. Korbel, J. D. Embury, M. Hatherly, P. L. Martin and H. W. Erbsloh, Acta Metall. 34 (1986) 1999.

    Google Scholar 

  16. R. P. Singh, A. Lawley, S. Friedman and Y. V. Murty, Mater. Sci. Eng. A145 (1991) 243.

    Google Scholar 

  17. C. S. Lee and B. J. Duggan, Acta Metall. Mater. 41 (1993 2691.

    Google Scholar 

  18. C. S. Lee, B. J. Duggan and R. E. Smallman, ibid. 41 (1993) 2265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, M.S., Song, J.S. & Hong, S.I. Microstructural and mechanical stability of Cu-6 wt. % Ag alloy. Journal of Materials Science 35, 4557–4561 (2000). https://doi.org/10.1023/A:1004876806313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004876806313

Keywords

Navigation