Skip to main content
Log in

Experimental determination of HONO mass accommodation coefficients using two different techniques

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The mass accommodation coefficient αHONO of gaseous nitrous acid on water surfaces has been determined in a cooperation between the Universities of Strasbourg and Bonn. The droplet train technique (Strasbourg) yielded 0.04<αHONO<0.09 for an estimated surface temperature of 245 K, while the liquid jet technique (Bonn) yielded 0.03<αHONO<0.15 for a surface temperature of 297 K. The uncertainty ranges allow for experimental scatter and estimated uncertainties in diffusion coefficients. The same HONO source and analytical equipment were used for both experiments, which were run in parallel. The results indicate that the exchange rate of HONO between atmospheric water droplets and interstitial air is not inhibited by interfacial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akimoto, H., Takagi, H., and Sakamaki, F., 1981, Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: extra radical source in smog chamber experiments,Int. J. Chem. Kinet. 19, 539–551.

    Google Scholar 

  • Berglund, R. N. and Liu, B. Y. H., 1973, Generation of monodisperse aerosol standards,Environ. Sci. Technol. 7, 147–153.

    Google Scholar 

  • Bongartz, A., Kames, J., Welter, F., and Schurath, U., 1991, Near-uv absorption cross sections and trans/cis equilibrium of nitrous acid,J. Phys. Chem. 95, 1076–1082.

    Google Scholar 

  • Bongartz, A., Schweighoefer, S., Roose, Ch. and Schurath, U., The mass accommodation coefficient of ammonia on water,J. Atmos. Chem., accepted for publication.

  • Cape, J. N., Hargreaves, K. J., Storeton-West, R., Fowler, D., Colvilee, R. N., Choularton, T. W., and Gallagher, M. W., 1992, Nitrite in orographic cloud as an indicator of nitrous acid in rural air,Atmos. Environ. 26A, 2301–2307.

    Google Scholar 

  • Chan, W. H., Nordstrom, R. J., Calvert, J. G., and Shaw, J. H., 1976, An IRFTS spectroscopic study of the kinetics and mechanism of the reactions in the gaseous system, HONO, NO, NO2, H2O,Chem. Phys. Lett. 37, 441–446.

    Google Scholar 

  • Chan, W. H., Nordstrom, R. J., Calvert, J. G., and Shaw, J. H., 1976, Kinetic study of HONO formation and decay reactions in gaseous mixtures of HONO, NO, NO2, H2O, and N2,Environ. Sci. Technol. 10, 674–682.

    Google Scholar 

  • Cox, R. A., 1974, The photolysis of gaseous nitrous acid,J. Photochem. 3, 175–188.

    Google Scholar 

  • CRC Handbook of Chemistry and Physics, 65th Edn., C. R. Weast (ed.), CRC Press Inc., 1985.

  • Davidovits, P., Jayne, J. T., Duan, S. X., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of Gas Molecules by Liquids: A Model,J. Phys. Chem. 95, 6337–6340.

    Google Scholar 

  • Duda, J. L. and Vrentas, J. S., 1966, Fluid mechanics of laminar liquid jets,Chem. Eng. Sci. 22, 855–869.

    Google Scholar 

  • Ferm, M. and Sjödin, A., 1985, A sodium carbonate coated denuder for determination of nitrous acid in the atmosphere,Atmos. Environ. 19, 979–983.

    Google Scholar 

  • Gardner, J. A., Watson, L. R., Adewuyi, Y. G., Davidovits, P., Zahniser, P., Worsnop, D. R., and Kolb, C. E., 1987, Measurements of the mass accommodation coefficient of SO2(g) on water droplets,J. Geophys. Res. 92, 10887–10895.

    Google Scholar 

  • Harris, G. W., Carter, W. P. L., Winer, A. M., Pitts, J. N., Platt, U., and Perner, D., 1982, Observations of nitrous acid in the Los Angeles atmosphere and implications for predictions of ozone-precursor relationship,Environ. Sci. Technol. 16, 414–419.

    Google Scholar 

  • Jayne, J. T., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990a, Uptake of SO2(g) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface,J. Phys. Chem. 94, 6041–6048.

    Google Scholar 

  • Jayne, J. T., Gardner, J. A., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990b, The effect of H2O2 content on the uptake of SO2(g) by aqueous droplets,J. Geophys. Res. 95, 20559–20563.

    Google Scholar 

  • Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of gas-phase alcohol and organic acid molecules by water surfaces,J. Phys. Chem. 95, 6329–6336.

    Google Scholar 

  • Jayne, J. T., Duan, S. X., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1992, Uptake of gas-phase aldehydes by water surfaces,J. Phys. Chem. 96, 5452–5460.

    Google Scholar 

  • Jenkin, M. E., Cox, R. A., and Williams, D. J., 1988, Laboratory studies of the kinetics of formation of nitrous acid from the thermal reaction of nitrogen dioxide and water vapour,Atmos. Environ. 22, 487–498.

    Google Scholar 

  • Junkermann, W. and Ibusuki, T., 1992, FTIR spectroscopic measurements of surface bond products of nitrogen oxides on aerosol surfaces — implications for heterogeneous HNO2 production,Atmos. Environ. 26A, 3099–3103.

    Google Scholar 

  • Kaiser, E. W. and Wu, C. H., 1977, A kinetic study of the gas phase formation and decomposition reactions of nitrous acid,J. Phys. Chem. 81, 1701–1706.

    Google Scholar 

  • Killus, J. P., and Whitten, G. Z., 1990, Background reactivity in smog chambers,Int. J. Chem. Kinet. 22, 547–575.

    Google Scholar 

  • Kirchner, W., Welter, F., Bongartz, A., Kames, J., Schweighoefer, S., and Schurath, U., 1990, Trace gas exchange at the air/water interface: measurements of mass accommodation coefficients,J. Atmos. Chem. 10, 427–449.

    Google Scholar 

  • Lammel, G., Perner, D., and Warneck, P., 1989, Nitrous acid at Mainz: observation and implication for its formation mechanism. In G. Restelli and G. Angeletti (eds.), Kluwer, Dordrecht.

    Google Scholar 

  • Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface,Nature 247, 181–184.

    Google Scholar 

  • Northolt, J., Hjort, J., and Raes, F., 1992, Formation of HNO2 on aerosol surfaces during foggy periods in the presence of NO and NO2,Atmos. Environ. 26, 211–217.

    Google Scholar 

  • Park, J. Y. and Lee, Y. N., 1988, Solubility and decomposition of nitrous acid in aqueous solution,J. Phys. Chem. 92, 6294–6302.

    Google Scholar 

  • Pitts Jr., J. N., Biermann, H. W., Winer, A. M., and Tuazon, E. C., 1984, Spectroscopic identification and measurements of gaseous nitrous acid in dilute auto exhaust,Atmos. Environ. 18, 847–854.

    Google Scholar 

  • Platt, U., and Perner, D., 1980, Direct measurements of atmospheric CH2O, HNO2, O3, NO2, and SO2 by differential optical absorption in the near UV,J. Geophys. Res. 85, 7453–7458.

    Google Scholar 

  • Ponche, J. L., George, Ch., and Mirabel, Ph., 1993, Mass transfer at the air/water interface: mass accommodation coefficients of SO2, HNO3, NO2 and NH3,J. Atmos. Chem. 16, 1–21.

    Google Scholar 

  • Pruppacher, H. R., and Klett, J. D., 1978, ‘Mocrophysics of clouds and precipitation’, D. Reidel, Boston, 136–162.

    Google Scholar 

  • Reid, C. R. and Sherwood, T. K., 1986,The Properties of Gases and Liquids, McGraw-Hill, New York, pp. 520–565.

    Google Scholar 

  • Sakamaki, F., Hatakeyama, S., and Akimoto, H., 1983, Formation of nitrous acid and nitric oxide in the heterogeneous dark reaction of nitrogen dioxide and water vapour in a smog chamber,Int. J. Chem. Kinet. 15, 1013–1029.

    Google Scholar 

  • Schwartz, S. E., 1986, Mass-transport considerations pertinent to aqueous phase reactions in gases and liquid-water clouds, in W. Jaeschke (ed.),Chemistry of Multiphase Atmospheric Systems, NATO ASI Series, Vol. G6, Springer-Verlag, Heidelberg, pp. 415–471.

    Google Scholar 

  • Slinn, W. G. N., Hasse, L., Hicks, B. B., Hogan, A. W., Lal, D., Liss, P. S., Munnich, K. O., Sehmel, G. A., and Vittori, O., 1978, Some aspects of the transfer of atmospheric trace constituents past the air-sea interface,Atmos. Environ. 12, 2055–2087.

    Google Scholar 

  • Staker, G. R. and Dunlop, P. J., 1976, The pressure dependence of the mutual diffusion coefficients of binary mixtures of helium and six other gases at 300 K; test of Thorne's equation,Chem. Phys. Lett. 42, 419–422.

    Google Scholar 

  • Svensson, R., Lungström, E., and Lindquist, O., 1987, Kinetics of the reaction between nitrogen dioxide and water vapour,Atmos. Environ. 21, 1529–1539.

    Google Scholar 

  • Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1990, Temperature dependence of the uptake of HNO3, HCl, and N2O5 by water droplets,J. Phys. Chem. 93, 3265–3269.

    Google Scholar 

  • Van Doren, J. M., Watson, L. R., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets,J. Phys. Chem. 95, 1684–1689.

    Google Scholar 

  • Watson, L. R., Van Doren, J. M., Davidovits, P., Worsnop, D. R., Zahniser, S., and Kolb, C. E., Uptake of HCl molecules by sulfuric acid droplets as a function of acid concentration,J. Geophys. Res. 95, 5631–5638.

  • Welter, F., Schweighoefer, S., and Schurath, U., 1991, Mass accommodation coefficient of SO2 on water measured by the liquid jet technique, in P. Borrell, P. M. Borrell and W. Seiler (eds.),Transport and Transformation of Pollutants in the Troposphere: Proceedings of EUROTRAC Symposium '90, SPB Academic Publishing, The Hague, pp. 335–339.

    Google Scholar 

  • Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Jayne, J. T., Watson, L. R., Van Doren, J. M., and Davidovits, P., 1989, Temperature dependence of mass accommodation of SO2 and H2O2 on aqueous surfaces,J. Phys. Chem. 93, 1159–1172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bongartz, A., Kames, J., Schurath, U. et al. Experimental determination of HONO mass accommodation coefficients using two different techniques. J Atmos Chem 18, 149–169 (1994). https://doi.org/10.1007/BF00696812

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696812

Key words

Navigation