Skip to main content
Log in

Peroxynitrate formation during the night-time oxidation of dimethylsulfide: Its role as a reservoir species for aerosol formation

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

The reaction between dimethyl sulphide (DMS) and the nitrate radical NO3 in dark air was studied in a Teflon bag, monitoring products formed in the gas phase together with aerosol composition and size distributions in the course of the experiment. The formation of the condensable products methane sulphonic acid (MSA) and sulphuric acid (H2SO4) was found to happen via a gaseous, relatively stable PAN-like peroxynitrate intermediate (CH3S(O)O2NO2 or CH3S(O)2O2NO2, called MSPN) which can build up to concentrations in the gas phase that are a multiple of MSA and H2SO4. A coupled gas chemistry-aerosol dynamics model was fitted to the experimental data and led to a consistent description of the partitioning of the S-containing products (SO2, MSPN, MSA and H2SO4) over gas and aerosol phase. The optimized chemical model reproduces adequately the observed strong NO dependence of the MSPN-to-(MSA+H2SO4) conversion rate by gas-phase reactions. The fitted loss rate for MSPN via pathways not included in the gas-phase mechanisms (e.g. reaction on aerosol particles or on the wall) is 100–500 times smaller than for N2O5. The model predicts further that about 50% of the initial DMS is transformed to SO2. Fitting the aerosol dynamics model to the observed aerosol growth rate, led to an estimate for the MSA condensation accommodation coefficient (αMSA>0.1) and for the MSA/H2SO4 formation ratio (1.2–3). The chemical model predicts that MSPN might be an important reservoir species for nitrogen, sulphur, and for aerosol formation in marine regions that are impacted by NO x -rich air masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom, R. T., Hardin, S., Houmere, P. D., LeMarrec, F., Raemdonck, H., and Chatfield, R. B., 1985, Dimethyl sulfide in the marine atmosphere,J. Geophys. Res. 90, 12891–12900.

    Google Scholar 

  • Andreae, M. O., 1990, The global biogeotechnical sulfur cycle: a review,Marine Chem. 30, 1–29.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., and Troe, J., 1989, Evaluated kinetic and photochemcial data for atmospheric chemistry: supplement III,J. Phys. Chem. Ref. Data, 881.

  • Atkinson, R. and Lloyd, A. C., 1984, Evaluation of kinetic and mechanistic data for modelling of photochemical smog,J. Phys. Chem. Ref. Data 13, 315.

    Google Scholar 

  • Balla, R. J., Nelson, H. H., and McDonald, J. R., 1986, Kinetics of the reaction of CH3S with NO, NO2 and O2,Chem. Phys. 109, 101–107.

    Google Scholar 

  • Barnes, I., Bastian, V., Becker, K. H., and Niki, H., 1987, FTIR spectroscopic studies of the CH3S + NO2 reaction under atmospheric conditions,Chem. Phys. Lett. 140, 451–457.

    Google Scholar 

  • Barnes, I., Bonsang, B., Brauers, T., Carlier, P., Cox, R. A., Dorn, H. P., Jenkin, M. E., Le Bras, G., and Platt, U., 1991, Laboratory and field studies of oxidation processes occurring in the atmospheric marine boundary layer (Oceano-Nox CEC project), Commission of the European Communities, Air Pollution Research Report 35.

  • Bates, T. S., Cline, J. D., Gammon, R. H., and Kelly-Hansen, S. R., 1987, Regional and seasonal variations in the flux of oceanic dimethylsulphide to the atmosphere,J. Geophys. Res. 92, 2930–2938.

    Google Scholar 

  • Covington, A. K., Robinson, R. A., and Thompson, R., 1973, Osmotic and activity coefficients for aqueous methane sulfonic acid solutions at 25C,J. Chem. Eng. Data 18, 422–423.

    Google Scholar 

  • DeMore, W. B., Margitan, J. J., Molina, M. J., Watson, R. T., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1985, Chemical kinetics and photochemical data for use in stratospheric modelling. No 7, JPL Publication.

  • DeMore, W. B., Sander, S. P., Golden, D. M., Molina, M. J., Hampson, R. F., Kurylo, M. J., Howard, C. J., and Ravishankara, A. R., 1990, Chemical kinetics and photochemical data for use in stratospheric modelling, No 9, JPL Publication 90–1.

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1992, Chemical kinetics and photochemical data for use in stratospheric modelling, No 10, JPL Publication 92–20.

  • Dlugokencky, E. J. and Howard, C. J., 1988, Laboratory studies of NO3 radical reactions with some atmospheric sulphur compounds,J. Phys. Chem. 92, 1188–1193.

    Google Scholar 

  • Fuchs, N. A., 1964,The Mechanics of Aerosols, Dover, New York, Chapter VII pp. 290–291.

    Google Scholar 

  • Grosjean, D., 1985, Wall losses of gaseous pollutants in outdoor teflon chambers,Environ. Sci. Technol. 19, 1059–1065.

    Google Scholar 

  • Hatakeyama, S., Izumi, K., and Akimoto, H., 1985, Yield of SO2 and formation of aerosol in the photo-oxidation of DMS under atmospheric conditions,Atmos. Environ. 19, 135–141.

    Google Scholar 

  • Hoppel, W. A., 1987, Nucleation in the MSA-water vapour system,Atmos. Environ. 21, 2703–2709.

    Google Scholar 

  • Jaecker-Viorol, A., Ponche, J. L., and Mirabel, P., 1990, Vapor pressure in the ternar system water-nitric acid-sulfuric acid at low temperatures,J. Geophys. Res. 95, 11857–11863.

    Google Scholar 

  • Jensen, N. R., Hjorth, J., Lohse, C., Skov, H., and Restelli, G., 1991, Products and mechanism of the reaction between NO3 and dimethylsulphide in air,Atmos. Environ. 25, 1897–1904.

    Google Scholar 

  • Jensen, N. R., Hjorth, J., Lohse, C., Skov, H., and Restelli, G., 1992, Products and mechanisms of the gas phase reactions of NO3 with CH3SCH3, CD3SCD3, CH3SH and CH3SSCH3,J. Atmos. Chem. 14, 95–108.

    Google Scholar 

  • Jensen, N. R. and Hjorth, J., 1994, Evidence for the formation of a stable intermediate in the tropospheric oxidation of DMS,Geophys. Res. Lett., in press.

  • Kreidenweis, S. M., Flagan, R. C., Seinfeld, J. H., and Okuyama, K., 1989, Binary nucleation of methane sulfonic acid and water,J. Aerosol Sci. 20, 585–607.

    Google Scholar 

  • Kusik, C. L. and Meissner, H. P., 1978, Electrolyte activity coefficients in inorganic processing,AIChe Symp. Ser. 173, 14–20.

    Google Scholar 

  • Muzorkewich, M. and Calvert, J., 1988, Reaction probability of N2O5 on aqueous aerosols,J. Geophys. Res. 93, 15889–15896.

    Google Scholar 

  • Nair, P. V. N. and Vohra, K. G., 1975, Growth of aqueous sulphuric acid droplets as a function of relative humidity,J. Aerosol Sci. 6, 265–271.

    Google Scholar 

  • Renninger, R. G., Hiller, F. C., and Bone, R. C., 1981, Comment on ‘Self-nucleation in the sulfuric acid-water system’,J. Chem. Phys. 75, 1584.

    Google Scholar 

  • Spiro, P. A., Jacob, D. J., and Logan, J. A., 1992, Global inventory of sulfur emissions with 1°×1° resolution,J. Geophys. Res. 97, 6023–6036.

    Google Scholar 

  • Tyndall, G. S., Burrows, J. P., Schneider, W., and Moortgat, G. K., 1986, Rate coefficient for the reaction between NO3 radicals and dimethylsulphide,Chem. Phys. Lett. 130, 463–466.

    Google Scholar 

  • Tyndall, G. S. and Ravishankara, A. R., 1989 Kinetics and mechanisms of the reactions of CH3S with O2 and NO2 at 298 K,J. Phys. Chem. 93, 2426–2435.

    Google Scholar 

  • Tyndall, G. S. and Ravishankara, A. R., 1991, Atmospheric oxidation of reduced sulfur species,J. Phys. Chem. 23, 483–527.

    Google Scholar 

  • Van Dingenen, R., Raes, F., and Vanmarcke, H., 1989, Molecule and aerosol particle wall losses in smog chambers made of glass,J. Aerosol Sci. 20, 113–122.

    Google Scholar 

  • Van Dingenen, R. and Raes, F., 1991, Determination of the condensation accommodation coefficient of sulfuric acid on water-sulfuric acid aerosol,Aerosol Sci. Technol. 15, 93–106.

    Google Scholar 

  • Van Dingenen, R. and Raes, F., 1993, Ternary nucleation of methane sulphonic acid, sulphuric acid and water vapour,J. Aerosol Sci. 24, 1–17.

    Google Scholar 

  • Van Doren, J. M., Watson, L. R., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E., 1991, Uptake of N2O5 and HNO3 by aqueous sulfuric acid droplets,J. Phys. Chem. 95, 1684–1689.

    Google Scholar 

  • Wallington, Y. J., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1986a, Absolute rate constants for the gas-phase reactions of the NO3 radical with CH3SCH3, NO2, CO and a series of alkanes at 298±2 K,J. Phys. Chem. 90, 4640–4643.

    Google Scholar 

  • Wallington, T. J., Atkinson, R., Winer, A. M., and Pitts, J. N. Jr., 1986b, Absolute rate constants for the gas-phase reactions of the NO3 radical with CH3SH, CH3SCH3, CH3SSCH3, H2S, SO2, and CH3OCH3 over the temperature range 280–350 K,J. Phys. Chem. 90, 5393–5396.

    Google Scholar 

  • Warren, D. R. and Seinfeld, J. H., 1985, Nucleation and growth in a continuously reinforced vapor,Aerosol Sci. Technol. 3, 135–153.

    Google Scholar 

  • Wayne, R. P., Barnes, I., Biggs, P., Cox, R. A., Hampson, R. F. Jr., Kerr, J. A., and Troe, J., 1991, The nitrate radical: physics, chemistry and the atmosphere,Atmos. Environ. 25, 1–212.

    Google Scholar 

  • Wyslouzil, B. E., Seinfeld, J. H., Flagan, R. C., and Okuyama, K., 1991a, Binary nucleation in acid-water systems. I. Methanesolfonic acid-water,J. Chem. Phys. 94, 6827–6841.

    Google Scholar 

  • Wyslouzil, B. E., Seinfeld, J. H., Flagan, R. C., and Okuyama, K., 1991b, Binary nucleation in acid-water systems. II: Sulfuric acid-water and a comparison with methanesulfonic acid-water,J. Chem. Phys. 94, 6842–6850.

    Google Scholar 

  • Yin, F., Grosjean, D., Flagan, R., and Seinfeld, J. H., 1990, Photooxidation of dimethyl sulfide. II: Mechanism Evaluation,J. Atmos. Chem. 11, 365–399.

    Google Scholar 

  • Zeleznik, F. J., 1991, Thermodynamic properties of the aqueous sulfuric acid system to 350 K,J. Phys. Chem. Ref. Data 20, 1157–1200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dingenen, R., Jensen, N.R., Hjorth, J. et al. Peroxynitrate formation during the night-time oxidation of dimethylsulfide: Its role as a reservoir species for aerosol formation. J Atmos Chem 18, 211–237 (1994). https://doi.org/10.1007/BF00696780

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00696780

Key words

Navigation