Skip to main content
Log in

Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

A stratigraphic diatom sequence is presented for the period from 13,870-9,170 cal BP from Kråkenes Lake, western Norway. Changes in species assemblages are discussed with reference to the changing environmental conditions in the Allerød, Younger Dryas, and the early Holocene and to the development of the aquatic ecosystem. The site is sensitive to acidification, and diatom-based transfer functions are applied to estimate the past pH status. The combination of rapid sediment accumulation together with an excellent calibrated radiocarbon chronology means that the rate of inferred pH change and associated increase in [H+] can be assessed and compared with recent, anthropogenically acidified situations.

The Allerød diatom assemblages are dominated by benthic taxa particularly Fragilaria species, indicating an unproductive, alkaline, turbid, and immature system. Diatoms are absent in the early part of the Younger Dryas, but subsequently a sparse planktonic flora develops reflecting decreased turbidity and/or increased nutrient supply. A clear sequence of diatom assemblages is seen in the early Holocene. A short-lived peak of Stephanodiscus species indicating a period of increased nutrient availability occurred at ca. 11,500 cal BP. Throughout the early Holocene, acid-tolerant species increasingly replaced less acidophilous, circumneutral taxa.

The lake became slightly more acid during the Allerød, but this was statistically insignificant in a trend test involving regression of pH or [H+] in relation to age. Diatom-inferred pH declined rapidly during the early Holocene period investigated (9,175-11,525 cal BP) with a statistically significant overall rate of 0.024 pH units per 100 yrs. This consisted of an older (ca. 11,525-10,255 cal BP) phase, where pH fell more rapidly at up to 0.095 pH units per 100 yrs; and a younger phase after ca. 10,500 cal BP where the pH fall was extremely slow (0.008 pH units per 100 yrs) and was not statistically significant.In the Allerød a combination of low catchment productivity together with disturbance, weathering, and minerogenic inwash ensured that the base-cation status remained relatively high. In the Holocene the catchment soils stabilised and base cations were sequestered by terrestrial vegetation and soil. This resulted in reduced base-cation leaching and this, together with the production of organic acids caused the lake to acidify, reaching an equilibrium by ca. 10,000 cal BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhonen, P., 1968. On the late-glacial and early post-glacial diatom succession in Loch of Park, Aberdeenshire, Scotland. Memoranda Societas pro Fauna et Flora Fennica 44: 13–20.

    Google Scholar 

  • Atkinson, K. M. & E. Y. Haworth, 1990. Devoke Water and Loch Sionascaig: recent environmental changes and the post-glacial overview. Phil. Trans. r. Soc., Lond. B 327: 349–355.

    Google Scholar 

  • Battarbee, R. W., 1984. Diatom analysis and the acidification of lakes. Phil. Trans. r. Soc., Lond. B 305: 451–477.

    Google Scholar 

  • Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. J. Wiley & Sons, Chichester: 527–570.

    Google Scholar 

  • Battarbee, R. W., 1990. The causes of lake acidification with special reference to the role of acid deposition. Phil. Trans. r. Soc., Lond. B 327: 339–347.

    Google Scholar 

  • Battarbee, R. W., 1992. Holocene lake sediments, surface water acidification and air pollution. Quat. Proc. 2: 101–110.

    Google Scholar 

  • Battarbee, R. W., 1994. Diatoms, lake acidification and the Surface Water Acidification Programme (SWAP): a review. Hydrobiologia 274: 1–7.

    Google Scholar 

  • Battarbee, R. W. & D. F. Charles, 1994. Lake acidification and the role of paleolimnology. In Steinberg, C. E. W. & R. F. Wright (eds), Acidification of Freshwater Ecosystems: Implications for the Future. J. Wiley, Chichester: 51–65.

    Google Scholar 

  • Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.

    Google Scholar 

  • Battarbee, R. W., N. J. Anderson, P. G. Appleby, R. J. Flower, S. C. Fritz, E. Y. Haworth, S. Higgitt, V. J. Jones, A. Kreiser, M. A. R. Munro, J. Natkanski, F. Oldfield, S. T. Patrick, N. G. Richardson, B. Rippey & A. C. Stevenson, 1988. Lake acidification in the United Kingdom 1800–1986: evidence from analysis of lake sediments. ENSIS Ltd, London, 68 pp.

    Google Scholar 

  • Beare, A., 1996. Amphora — a Diatom Database for Species and Environmental Data, ECRC, London (unpublished).

    Google Scholar 

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132: 155–170.

    Google Scholar 

  • Birks, H. H., 1994. Late-glacial vegetational ecotones and climatic patterns in Western Norway. Veg. Hist. Archaeobot. 3: 107–119.

    Google Scholar 

  • Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolim. 23: 7–19.

    Google Scholar 

  • Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5.

    Google Scholar 

  • Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem at Kråkenes Lake during the late-glacial and early-Holocene — a synthesis. J. Paleolim. 23: 91–114.

    Google Scholar 

  • Birks, H. H., R. W. Battarbee, D. J. Beerling, H. J. B. Birks, S. J. Brooks, C. A. Duigan, S. Gulliksen, H. Haflidason, F. Hauge, V. J. Jones, B. Jonsgard, M. Kårevik, E. Larsen, G. Lemdahl, R. Løvlie, J. Mangerud, S. M. Peglar, G. Possnert, J. P. Smol, J. O. Solem, I. Solhøy, T. Solhøy, E. Sønstegaard & H. E. Wright, 1996a. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286.

    Google Scholar 

  • Birks, H. H., S. Gulliksen, G. Possnert & J. Mangerud, 1996b. New radiocarbon dates for the Vedde Ash and the Saksunarvatn Ash from western Norway. Quat. Res. 45: 119–127.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data, Technical Guide 5. Quaternary Research Association, Cambridge: 161–254.

    Google Scholar 

  • Birks, H. J. B., 1998. Numerical methods in palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332.

    Google Scholar 

  • Birks, H. J. B. & A. D. Gordon, 1985. Numerical methods in Quaternary pollen analysis. Academic Press, London, 317 pp.

    Google Scholar 

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. ter Braak, 1990. Diatoms and pH reconstruction. Phil. Trans. r. Soc., Lond. B 327: 263–278.

    Google Scholar 

  • Boström, B., J. M. Andersen, S. Fleischer & M. Jansson, 1988. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170: 229–244.

    Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2000. Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway. J. Paleolim. 23: 77–89.

    Google Scholar 

  • Cameron, N. G., H. J. B. Birks, V. J. Jones, F. Berge, J. Catalan, R. J. Flower, J. Garcia, B. Kawecka, K. A. Koinig, A. Marchetto, P. Sánchez-Castillo, R. Schmidt, M. Šiško, N. Solovieva, E. Stefkova & M. Toro Valasquez, 1999. Surface sediment and epilithic diatom pH calibration sets for remote European mountain lakes (AL:PE Project) and their comparison with the Surface Waters Acidification Programme (SWAP) calibration set. J. Paleolim. 22: 291–317.

    Google Scholar 

  • Charles, D. F., R. W. Battarbee, I. Renberg, H. van Dam & J. P. Smol, 1989. Paleoecological analysis of lake acidification trends in North America and Europe using diatoms and chrysophytes. In Norton, S. A., S. E. Lindberg & A. L. Page (eds), Acidic Precipitation. Soils, Aquatic Processes, and Lake Acidification, Vol. 4. Springer-Verlag, New York, NY: 207–276.

    Google Scholar 

  • Charles, D. F. & J. P. Smol, 1994. Long-term chemical changes in lakes. Quantitative inferences from biotic remains in the sediment record. In Baker, L. A. (ed.), Environmental Chemistry of Lakes and Reservoirs. Advances in Chemistry Series 237, American Chemical Society: 3–31.

  • Davis, R. B. & J. P. Smol, 1986. The use of sedimentary remains of siliceous algae for inferring past chemistry of lake water — problems, potential and research needs. In Smol, J. P. et al. (eds), Diatoms and Lake Acidity. Dr W. Junk Publishers, Dordrecht: 291–300.

    Google Scholar 

  • Douglas, M. S. V., J. P. Smol & W. Blake, 1994. Marked post-18th century environmental change in high Arctic ecosystems. Science 266: 416–419.

    Google Scholar 

  • Douglas, M. S. V., S. Ludlam & S. Feeney, 1996. Changes in lake C2 (Ellesmere Island, Arctic Canada): response to basin isolation from the sea and to other environmental changes. J. Paleolim. 16: 217–226.

    Google Scholar 

  • Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76.

    Google Scholar 

  • Fjerdingstad, E., 1954. The subfossil algal flora of the Lake Bølling Sø and its limnological interpretation. Dan. Biol. Skr. 7(6): 56 pp.

    Google Scholar 

  • Flower, R. J., V. J. Jones & F. E. Round, 1996. The distribution and classification of the problematic Fragilaria (virescens) v. exigua Grun./Fragilaria exiguiformis (Grun.) Lange-Bertalot: a new species or a new genus? Diatom Research 11: 41–57.

    Google Scholar 

  • Ford, M. S., 1990. A 10000-yr history of natural ecosystem acidification. Ecol. Monogr. 60: 57–89.

    Google Scholar 

  • Gordon, A. D., 1982. Numerical methods in Quaternary palaeoecology V. Simultaneous graphical representation of the levels and taxa in a pollen diagram. Rev. Palaeobot. Palynol. 37: 155–183.

    Google Scholar 

  • Granéli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170: 245–266.

    Google Scholar 

  • Grimm, E. C., 1991. TILIA version 1.11. TILIA.GRAPH version 1.18. Illinois State Museum, Springfield, USA.

    Google Scholar 

  • Gulliksen, S., G. Possnert, J. Mangerud & H. H. Birks, 1994. AMS 14C dating of the Kråkenes late Weichselian sediments. Abstract PE-22; 15th International Radiocarbon Conference Glasgow, 15–18 August 1994.

  • Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas — Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259.

    Google Scholar 

  • Haworth, E. Y., 1976. Two late-glacial (Late Devensian) diatom assemblage profiles from northern Scotland. New Phytol. 77: 227–256.

    Google Scholar 

  • Hustedt, F., 1937-1939. Systematische und ökologische Ü ntersuchungen uber den Diatomeen-flora von Java, Bali, Sumatra. Arch. Hydrobiol. (suppl.) 15–16.

    Google Scholar 

  • Jones, V. J., A. C. Stevenson & R. W. Battarbee, 1989. The acidification of lakes in Galloway, south-west Scotland: a diatom and pollen study of the post-glacial history of the Round Loch of Glenhead. J. Ecol. 77: 1–23.

    Google Scholar 

  • Jones, V. J., D. Hodgson & A. Chepstow-Lusty, 1999. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene (in press).

  • Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82.

    Google Scholar 

  • Juggins, S., 1994. TRAN, version 1.7. University College London. Juggins, S. & C. J. F. ter Braak, 1997. CALIBRATE, version 0.70 — A Computer Program for Species — Environmental Calibration by [Weighted-Averaging] Partial Least Squares Regression. University of Newcastle.

  • Korhola, A., 1992. The Early Holocene hydrosere in a small acid hill-top basin studied using crustacean sedimentary remains. J. Paleolim. 7: 1–22.

    Google Scholar 

  • Korhola, A. & M. Tikkanen, 1991. Holocene development and early extreme acidification in a small hilltop lake in southern Finland. Boreas 20: 333–356.

    Google Scholar 

  • Korsman, T. & U. Segerström, 1998. Forest fire and lake-water acidity in a northern Swedish boreal area: Holocene changes in lake-water quality at Makkassjön. J. Ecol. 86: 113–124.

    Google Scholar 

  • Larsen, E., F. Eide, O. Longva & J. Mangerud, 1984. Allerød — Younger Dryas climatic inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arct. Alp. Res. 16: 27–160.

    Google Scholar 

  • Laxen, D. P. H., 1984. Linear scale for acid rain? Nature 309: 409.

    Google Scholar 

  • Lemdahl, G., 2000. Late-glacial and early-Holocene Coleoptera assemblages as indicators of local environment and climate at Kråkenes Lake, western Norway. J. Paleolim. 23: 57–66.

    Google Scholar 

  • Manly, B. F. J., 1997. Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, London, 399 pp.

    Google Scholar 

  • Pennington, W., 1984. Long-term natural acidification of upland sites in Cumbria: evidence from post-glacial sediments. Report of the Freshwater Biological Association 52: 28–46.

    Google Scholar 

  • Pennington, W., E. Y. Haworth, A. P. Bonny & J. P. Lishman, 1972. Lake sediments in Northern Scotland. Phil. Trans. r. Soc., Lond. B 264: 191–294.

    Google Scholar 

  • Renberg, I., 1990. A 12600 year perspective of the acidification of Lilla-Öresjön, Southwest Sweden. Phil. Trans. r. Soc., Lond. B 327: 357–361.

    Google Scholar 

  • Renberg, I. & T. Hellberg, 1982. The pH history of lakes in Southwestern Sweden, as calculated from the subfossil flora of the sediments. Ambio 11: 30–33.

    Google Scholar 

  • Renberg, I., T. Korsman & N. J. Anderson, 1993. A temporal perspective of lake acidification in Sweden. Ambio 22: 264–271.

    Google Scholar 

  • Round, F. E., 1957. The late-glacial diatom succession in the Kentmere Valley deposit. 1. Introduction, methods and flora. New Phytol. 56: 98–126.

    Google Scholar 

  • Schmidt, R., R. Mäusbacher & J. Müller, 1990. Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). J. Paleolim. 3: 55–74.

    Google Scholar 

  • Smol, J. P., 1983. Palaeophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61: 2195–2204.

    Google Scholar 

  • Solhøy, I. W. & T. Solhøy, 2000. The subfossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. J. Paleolim. 23: 35–47.

    Google Scholar 

  • Spaulding, S. A., D. M. McKnight, R. L. Smith & R. Dufford, 1994. Phytoplankton dynamics in perennially ice-covered L. Fryxell, Antarctica. J. Plankton Res. 16: 527–541.

    Google Scholar 

  • Stabell, B., 1985. The development and succession of taxa within the diatom genus Fragilaria Lyngbye as a response to basin isolation from the sea. Boreas 14: 273–286.

    Google Scholar 

  • Stevenson, A. C., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, E. Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/ Lake-Water Chemistry Data-Set. ENSIS Ltd, London, 86 pp.

    Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–202.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows. Microcomputer Power, Ithaca, 352 pp.

    Google Scholar 

  • Wolfe, A. P., 1996. A high-resolution late-glacial and early Holocene diatom record from Baffin Island, eastern Canadian Arctic. Can. J. Earth Sci. 33: 928–937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradshaw, E., Jones, V.J., Birks, H. et al. Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. Journal of Paleolimnology 23, 21–34 (2000). https://doi.org/10.1023/A:1008021016027

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008021016027

Navigation