Skip to main content
Log in

Quaternary Fourier stratigraphy: Orbital templates and Milankovitch anomalies

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

A simple template-generating algorithm using summer insolation at 65°N as input provides a timeseries for the last 2 million years that can be compared directly with the oxygen isotope record in deep-sea sediments. Discrepancies between template and record are diminished by representing both series as Fourier expansions, and importing the power spectrum of the record to the template, without changing phase. The remaining differences between the hybrid template and the record contain messages about time spans of unusual behavior of the system. The most striking anomalies in the Quaternary are the unusually cold period following the mid-Pleistocene climate shift at 900 ka (Stage 22) and much of Stage 11 near 400 ka, representing excess warming. The present interglacial also is too warm, compared with expectations. Anomalies are thought to be the result of stabilization of unusually cold periods (by albedo feedback) and unusually warm periods (by carbon dioxide feedback). It is proposed that there is a connection between surplus ice buildup (after the mid-Pleistocene climate shifi at 900 ka) on marine shelves and subsequent extra-large transgressions, which stabilize warm periods by shallow-water carbonate production (coral reef hypothesis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baksi, A. K., Hsu, V., McWilliams, M. O., and Farrar, E.. 1992,40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal: Science, v. 256, n. 5055, p. 356–357.

    Google Scholar 

  • Barnola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1987, Vostok Ice Core Provides 160,000-Year Record of Atmospheric CO2: Nature, v. 329, n. 6138, p. 408–414.

    Google Scholar 

  • Berger, A. L., and Loutre, M. F., 1991, Insolation Values for the Climate of the Last 10 Million Years: Quat. Sci. Rev., v. 10, n. 4, p. 297–317.

    Google Scholar 

  • Berger, W. H., and Jansen, E., Mid-Pleistocene Climate Shift: The Nansen Connection: Nansen Symposium, Am. Geophys. Union, Washington, D.C. (in press a).

  • Berger, W. H., and Jansen, E., Fourier Stratigraphy: Spectral Gain Adjustment of Orbital Ice-Mass Models as an Aid in Dating Late Neogene Deep-Sea Sediments: Paleoceanography (in press b).

  • Berger, W. H., and Keir, R. S., 1984, Glacial-Holocene Changes in Atmospheric CO2 and the Deep-Sea Record,in J. E. Hansen and T. Takahashi, eds.Climate Processes and Climate Sensitivity: Am. Geophys. Union Geophys. Monogr., v. 29, p. 337–351.

  • Berger, W. H., and Spitzy, A., 1988, History of Atmospheric CO2: Constraints from the Deep-Sea Record: Paleoceanography, v. 3, n. 4, p. 401–411.

    Google Scholar 

  • Berger, W. H., Kroenke, L. W., Mayer, L. A., et al., 1993a, Scientific Results, Ontong Java Plateau: Proceedings of the Ocean Drilling Program, v. 130, Texas A&M University, College Station, Texas, 867 p.

    Google Scholar 

  • Berger, W. H., Bickert, T.. Schmidt, H., and Wefer, G., 1993b, Quaternary Oxygen Isotope Record of Pelagic Foraminifers: Site 806, Ontong Java Plateau: Proceedings of the Ocean Drilling Program, Scientific Results, v. 130, p. 381–395.

    Google Scholar 

  • Berger, W. H., Yasuda, M., Bickert, T., Wefer, G., and Takayama, T., 1994, Quaternary Time Scale for the Ontong Java Plateau: Milankovitch Template for Ocean Drilling Program Site 806: Geology, v. 22, n. 5, p. 463–467.

    Google Scholar 

  • Calder, N., 1974, Arithmetic of Ice Ages: Nature, v. 252, n. 5480, p. 216–218.

    Google Scholar 

  • Denton, G. H., and Hughes, T. J., 1983, Milankovitch Theory of Ice Ages: Hypothesis of Ice-Sheet Linkage Between Regional Insolation and Global Climate: Quat. Res., v. 20, n. 2, p. 125–144.

    Google Scholar 

  • Einsele, G., Ricken, W., and Seilacher, A., eds., 1991.Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, 955 p.

    Google Scholar 

  • Emiliani, C., 1955, Pleistocene Temperatures: J. Geol., v. 63, n. 6, p. 538–578.

    Google Scholar 

  • Emiliani, C., and Geiss, J., 1959, On Glaciations and Their Causes: Geol. Rundsch., v. 46 (for 1957), n. 2, p. 576–601.

    Google Scholar 

  • Farrell, J. W., and Prell, W. L., 1989, Climatic Change and CaCO3 Preservation: An 800,000 Year Bathymetric Reconstruction from the Central Equatorial Pacific Ocean. Paleoceanography, v. 4, n. 4, p. 447–466.

    Google Scholar 

  • Herbert, T. D.. and Mayer, L. A., 1991, Long Climatic Time Series from Sediment Physical Property Measurements: J. Sed. Petrol., v. 61, n. 7, p. 1089–1108.

    Google Scholar 

  • Imbrie, J., Berger, A., Boyle, E. A., Clemens, S. C., Duffy, A., Howard, W. R., Kukla, G., Kutzbach, J., Martinson, D. G., McIntyre, A., Mix, A. C., Molfino, B., Morley, J. J., Peterson, L. C., Pisias, N. G., Prell, W. L., Raymo, M. E., Shackleton, N. J., and Toggweiler, J. R., 1993, On the Structure and Origin of Major Glaciation Cycles 2. The 100,000-year Cycle: Paleoceanography, v. 8, n. 6, p. 699–735.

    Google Scholar 

  • Johnson, R. G., 1982, Brunhes-Matuyama Magnetic Reversal Dated at 790,000 yr B.P. by Marine-Astronomical Correlations: Quat. Res., v. 17, n. 2, p. 135–147.

    Google Scholar 

  • Mayer, L. A., 1991, Extraction of High-Resolution Carbonate Data for Paleoclimate Reconstruction: Nature, v. 352, n. 6331, p. 148–150.

    Google Scholar 

  • McKenzie, J. A., Davies, P. J.. Palmer-Julson, A. A., et al., 1993, Scientific Results, Northeast Australian Margin: Proceedings of the Ocean Drilling Program, v. 133, Texas A&M University, College Station, Texas, 901 p.

    Google Scholar 

  • Milankovitch, M., 1930, Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen,in W. Köppen and R. Geiger, eds.,Handbuch der Klimatologie in fünf Bänden, Bd 1, Teil A: Borntraeger, Berlin, 176 p.

    Google Scholar 

  • Opdyke, B. N., and Walker, J. C. G., 1992, Return of the Coral Reef Hypothesis: Basin to Shelf Partitioning of CaCO3 and Its Effect on Atmospheric CO2: Geology, v. 20, n. 8, p. 733–736.

    Google Scholar 

  • Pisias, N. G., and Moore, T. C., 1981, The Evolution of Pleistocene Climate: A Time Series Approach: Earth Planetary Sci. Lett., v. 52, n. 2, p. 450–456.

    Google Scholar 

  • Raffi, I., Backman, J., Rio, D., and Shackleton, N. J., 1993, Plio-Pleistocene Nannofossil Biostratigraphy and Calibration to Oxygen Isotope Stratigraphies from Deep Sea Drilling Project Site 607 and Ocean Drilling Program Site 677: Paleoceanography, v. 8, n. 3, p. 387–408.

    Google Scholar 

  • Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and Backman, J., 1989, Pleistocene Evolution: Northern Hemisphere Ice Sheets and North Atlantic Ocean: Paleoceanography, v. 4, n. 4, p. 353–412.

    Google Scholar 

  • Saltzman, B., and Verbitsky, M. Ya., 1993, Multiple Instabilities and Modes of Glacial Rhythmicity in the Plio-Pleistocene: A General Theory of Late Cenozoic Climatic Change. Climate Dynamics, v. 9, n. 1, p. 1–15.

    Google Scholar 

  • Schwarzacher, W., 1993,Cyclostratigraphy and the Milankovitch Theory: Developments in Sedimentology Vol. 52: Elsevier, Amsterdam, 225 p.

    Google Scholar 

  • Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen Isotope and Paleomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale: Quat. Res., v. 3, n. 1, p. 39–55.

    Google Scholar 

  • Shackleton, N. J., Berger, A., and Peltier, W. R., 1990, An Alternative Astronomical Calibration of the Lower Pleistocene Timescale Based on ODP Site 677: Trans. Roy. Soc. Edinburgh, Earth Sci., v. 81, n. 4, p. 251–261.

    Google Scholar 

  • Tauxe, L., Deino, A. D., Behrensmeyer, A. K., and Potts, R., 1992, Pinning Down the Brunhes/Matuyama and Upper Jaramillo Boundaries: A Reconciliation of Orbital and Isotopic Time Scales: Earth Planet. Sci. Lett., v. 109, n. 3/4, p. 561–572.

    Google Scholar 

  • Wei, W., 1993, Calibration of Upper Pliocene—Lower Pleistocene Nannofossil Events with Oxygen Isotope Stratigraphy: Paleoceanography, v. 8, n. 1, p. 85–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, W.H. Quaternary Fourier stratigraphy: Orbital templates and Milankovitch anomalies. Math Geol 26, 769–781 (1994). https://doi.org/10.1007/BF02083116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02083116

Key words

Navigation