Skip to main content
Log in

Non-radial flow of an incompressible fluid of second grade in a contracting channel

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The steady non-radial flow of an incompressible fluid of second grade in a contracting channel is studied. The dependence of the flow on the material parameters of the fluid and on the channel angle is investigated. A similarity transformation is introduced for the streamfunction which reduces the P.D.E. to a sequence of O.D.E.s. A series solution is employed to solve the problem.

Sommario

Si studia il flusso stazionario non radiale di un fluido di secondo grado incomprimibile in un canale convergente, esaminandone la dipendenza dai parametri materiali del fluido e dall'angolo di apertura del canale. Si introduce una trasformazione di similitudine per la funzione di corrente che riduce l'equazione di moto ad una serie di equazioni differenziali ordinarie, risolte numericamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeffery, G.B., ‘The two-dimensional steady motion of a viscous fluid’,Phil. Mag. 29 (1915) 455–465.

    Google Scholar 

  2. Hamel, G., ‘Spiralförmige Bewegungen zäher flüssigkeiten’,Jber. dtsch Math. Ver. 25 (1917) 34–60.

    Google Scholar 

  3. Schlichting, H.,Boundary Layer Theory, McGraw-Hill, New York, 1968.

    Google Scholar 

  4. Birkhoff G.D. and Zarantonello E.H.,Jets, Wakes and Cavities, Academic press, New York, 1957.

    Google Scholar 

  5. Moffat, H.K. and Duffy, B.R., ‘Local similarity solutions and their limitations’,J. Fluid Mech. 96 (1980) 299–313.

    Google Scholar 

  6. Dunn, J.E., ‘On the impossibility of Jeffery-Hamel flows for simple fluids’,Proceedings of the SECTAM Meeting, Huntsville, Alabama, 1981.

  7. Strauss, K., ‘Die strömung einer einfachen viskoelastischen flüssigkeit in einem konvergenten kanal, Teil I: Die stationäre strömung’,Acta Mechanica 20 (1974) 233–246.

    Google Scholar 

  8. Bhatnagar, R.K., Rajagopal, K.R. and Gupta, G., ‘Flow of an Oldroyd-B fluid between intersecting planes’,J. Non-Newtonian Fluid Mech., 1992.

  9. Rajagopal, K.R., ‘On the creeping flow of the second order fluid’,J. Non-Newtonian Fluid Mech. 15 (1984) 239–246.

    Google Scholar 

  10. Huilgol, R.R., ‘On uniqueness and non-uniqueness in the plane creeping flow of second order fluids’,SIAM J. Appl. Math. 24 (1973) 226–233.

    Google Scholar 

  11. Fosdick R.L. and Rajagopal, K.R., ‘Uniqueness and drag for fluids of second grade in steady motion’,Int. J. Non-Linear Mech. 13 (1978) 131–137.

    Google Scholar 

  12. Yoo, H.J. and Han, C.D., ‘Stress distribution of polymers in extrusion through a converging die’,J. Rheol. 25 (1981) 115–137.

    Google Scholar 

  13. Han, C.D. and Drexler, L.H., ‘Studies of converging flows of viscoelastic polymeric melts. III. Stress and velocity distributions in the entrance region of a tapered slit die’,J. Appl. Polymer Sci. 17 (1973) 2369–2393.

    Google Scholar 

  14. Hull, A.M., ‘An exact solution for the slow flow of a general linear viscoelastic fluid through a slit’,J. Non-Newtonian Fluid Mech. 8 (1981) 327–336.

    Google Scholar 

  15. Serrin, J., ‘On the mathematical basis for Prandtl's Boundary Layer Theory: an example’,Arch. Rat. Mech. Anal. 28 (1968) 217–225.

    Google Scholar 

  16. Mansutti, D. and Pontrelli, G., ‘Jefferey-Hamel flow of power-law fluids for exponent values close to the critical value’,Int. J. Non-linear Mech. 26/5 (1991) 761–767.

    Google Scholar 

  17. Hooper, A., Duffy B.R. and Moffat, H.K., ‘Flow of fluid of non-uniform viscosity in converging and diverging channels’,J. Fluid Mech. 117 (1982) 283–304.

    Google Scholar 

  18. Duffy, B.R., ‘Shear layers in converging flow of fluid of non-uniform density and viscosity’,J. Fluid Mech. 129 (1983) 109–121.

    Google Scholar 

  19. Dunn, J.E., Fosdick, R.L., ‘Thermodynamics, stability and boundedness of fluids of complexity 2 and fluids of second grade’,Arch Rat. Mech. Anal. 56 (1974) 191–252.

    Google Scholar 

  20. Rivlin, R.S. and Ericksen, J.L., ‘Stress deformation relation for isotropic materials’,J. Rat. Mech. Anal. 4 (1955) 323–425.

    Google Scholar 

  21. Coleman, B.D. and Noll, W., ‘An approximation theorem for functionals, with applications in continuum mechanics’,Arch. Rat. Mech. Anal. 6 (1960) 355–370.

    Google Scholar 

  22. Dunn, J.E. and Rajagopal, K.R., ‘A critical historical review and thermodynamic analysis of fluids of differential type’, submitted for publication, 1991.

  23. de Boor, C.,A Practical Guide to Splines, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  24. de Boor, C. and Swartz, B., ‘Collocation at Gaussian points’,SIAM J. Num. Anal. 10 (1973) 582–606.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pontrelli, G. Non-radial flow of an incompressible fluid of second grade in a contracting channel. Meccanica 30, 53–62 (1995). https://doi.org/10.1007/BF00987125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00987125

Key words

Navigation