Skip to main content
Log in

The dynamics of configurational forces at phase-transition fronts

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

First we recognize that the coherence of certain phase transformations in solids is most vividly expressed using the material manifold and within the kinematic continuum description based on the so-calledinverse motion. In this fully dynamical framework the equation of interest is theun-balance of pseudomomentum for thermoelastic conductors. On computing the power developed by the accompanying surface source of quasi-inhomogeneities at the phase-transition front, we show that this relates directly to the normal jump of the Eshelby stress — devoid of any kinetic energy, but computed from the free energy — a scalar quantity which may be referred to as theHugoniot-Gibbs configurational force at the front. The thermodynamic analysis also establishes that this power is dissipated as the material progresses at the front that ishomothermal. The jump relation including this dissipation is that associated with the heat propagation equation valid at regular points. In all, this approach is based on the theory of material uniformity and inhomogeneities as developed in recent years by M. Epstein and the authors. All reasonings are made in full dynamics, for finite strains, and any anisotropy in three dimensions.

Sommario

Si osserva preliminarmente che, per alcune trasformazioni di fase nei solidi, la più naturale descrizione del fenomeno nell'ambito del continuo sembra essere quella basata sul moto inverse in dinamica, o sulla deformazione inversa in statica. In tale quadro, la nozione di ‘coerenza di fase’, suggerita dalla congruenza geometricocinematica tra due distinti reticoli cristallini a contatto, trova la sua espressione più significativa nella condizione di continuità degli ‘spostamenti di siti’ nel riferimento cristalline. Sulla base di argomentazioni svolte in precedenti lavori dagli autori per il caso dinamico e da M. Epstein per il caso statico e termostatico, si presuppone valida un'equazione di bilancio ‘materiale’: quella dellapseudo-quantità di moto. Si richiede che tale bilancio sia soddisfatto attraverso una superficie di contatto tra le due fasi. Tale superficie o fronte, avanzando, determina la trasformazione del materiale da una fase nell'altra. Il fronte è suppostoomotermo ed il materiale termoelastico in ciascuna delle due fasi. Un ruolo chiave è svolto dal tensore degli sforzi materiali di Eshelby. Infatti, la potenza sviluppata dalle forze di disomogeneità attraverso il fronte che avanza è unicamente determinata dalla discontinuità del tensore di Eshelby lungo la normale al fronte. Inoltre, l'espressione che detta potenza assume permette di evidenziare una quantità scalare che proponiamo di denominareforza configurazionale di Hugoniot-Gibbs per le analogie che essa suggerisce. Si sviluppa infine una trattazione parallela sulla base di una formulazione termodinamica classica del continuo. Un confronto dei risultati permette di Stabilire che la potenza sviluppata dalla forza configurazionale viene dissipata mentre il fronte avanza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruhat, G.,Thermodynamique, Masson Editeurs, Paris, 1962.

    Google Scholar 

  2. Bain, E.C.,Trans. Amer. Inst. Min. Metall. Eng.,70 (1924) 25–41.

    Google Scholar 

  3. Roitburd, A.L., ‘Equilibrium and phase diagrams of coherent phases in solids’,Sov. Phys. Solid State,26 (1984) 1229–1233.

    Google Scholar 

  4. Cahn, J.W. and Larché, F.L., ‘A simple model for coherent equilibrium’,Acta Metall.,32 (1984) 1915–1923.

    Google Scholar 

  5. Buerger, M.J.,Phase Transformations in Solids, J. Wiley, New York, 1951.

    Google Scholar 

  6. Bitter, F., ‘On impurities in metals’,Phys. Rev.,37 (1931) 1527–1547.

    Google Scholar 

  7. Maugin, G.A.,Material Inhomogeneities in Elasticity, Chapman and Hall, London, 1993.

    Google Scholar 

  8. Maugin, G.A. and Trimarco, C., ‘Pseudo-quantité de mouvement et milieux élastiques inhomogènes’,C.R. Acad. Sci. Paris,II-316 (1991) 851–856.

    Google Scholar 

  9. Maugin, G.A. and Trimarco, C., ‘Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture’,Acta Mechanica,94 (1992) 1–28.

    Google Scholar 

  10. Maugin, G.A. and Trimarco, C., ‘Note on a mixed variational principle in finite elasticity’,Rend. Mat. Accad. Lincei,9 (1992) 69–74.

    Google Scholar 

  11. Abeyaratne, R. and Knowles, J.K., ‘On the driving traction acting on a surface of strain-discontinuity in a continuum’,J. Mech. Phys. Solids,38 (1990) 345–360.

    Google Scholar 

  12. Roitburd, A.L., ‘Martensitic transformation as a typical phase transition in solids’ in:Solid State Physics, Vol. 33, Academic Press, New York, 1978 pp. 317–407.

    Google Scholar 

  13. Kröner, E., ‘Differential geometry of defects in condensed systems’,Int.J.Engng. Sci.,19 (1982) 1507–1515.

    Google Scholar 

  14. Epstein, M. and Maugin, G.A., ‘The energy-momentum tensor and material uniformity in finite elasticity’,Acta Mechanica,83 (1990) 127–13.

    Google Scholar 

  15. Epstein, M. and Maugin, G.A., ‘On the geometrical material structure of anelasticity’ (Preprint UPMC-LMM, Paris, July 1994).Acta Mechanica (in print, 1995).

  16. Truesdell, C.A. and Noll, W., ‘The nonlinear field theory of mechanics’, in:Handbuch der Physik, Bd. III/3, ed. S. Flügge, Springer-Verlag, Berlin, 1965.

    Google Scholar 

  17. Kosinski, W.,Field Singularities and Wave Analysis in Continuum Mechanics, P.A.N., Warsaw and Ellis-Horwood, Chichester, U.K., 1986.

    Google Scholar 

  18. Suhubi, E.S., ‘Thermoelastic solids’, in:Continuum Physics, Vol. 2, ed. A.C. Eringen, Academic Press, New York, (1975) pp. 174–265.

    Google Scholar 

  19. Maugin, G.A.,Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam, 1988.

    Google Scholar 

  20. Maugin, G.A.,The Thermomechanics of Plasticity and Fracture, Cambridge University Press, U.K., 1992.

    Google Scholar 

  21. Epstein, M. and Maugin, G.A., ‘Thermoelastic material forces: definition and geometric aspects’,C.R. Acad. Sci. Paris. II-320, (1995), 63–68.

    Google Scholar 

  22. Bui, H.D.,Mécanique de la Rupture Fragile, Masson Editeurs, Paris.

  23. Maugin, G.A. and Trimarco, C., ‘Dissipation of configurational forces in defective elastic bodies’,Arch. Mech. 47, (1995), 81–99.

    Google Scholar 

  24. Hill, R., ‘Energy-momentum tensor in elastostatics: some reflections on the general theory’,J. Mech. Phys. Solids,34 (1986) 305–317.

    Google Scholar 

  25. Eshelby, J.D., ‘Energy relations and the energy-momentum tensor in continuum mechanics’, in:Inelastic Behavior of Solids, eds. M.F. McKinnen, W.F. Adler, A.R. Rosenfeld and R.I. Jaffe, McGraw Hill, New York 1970, pp. 77–114.

    Google Scholar 

  26. Dems, K. and Mroz, Z., ‘Stability conditions for brittle-plastic structures with propagation damage surfaces’,J. Struct. Mech.,13 (1985) 95–122.

    Google Scholar 

  27. Pradeil-Duval, R.M. and Stolz, C., ‘Sur le problème d'évolution des solides avec changement de phase irréversible’,C.R. Acad. Sci. Paris,II-313 (1991) 297–302.

    Google Scholar 

  28. Bowen R.M., ‘Towards a thermodynamics and mechanics of mixture’,Arch. art. Mech. Anal.,24 (1967) 370–403.

    Google Scholar 

  29. Grinfeld, M.A.,Thermodynamic Methods in the Theory of Heterogeneous Systems, ISIMM Series, Longman, Harlow, U.K., 1991.

    Google Scholar 

  30. Truskinowski L.M., ‘Dynamics of non-equilibrium phase boundaries in a heat-conducting nonlinearly elastic medium’,P.M.M. (J. App. Math. Mech., USSR),51 (1987) 777–784.

    Google Scholar 

  31. Dascalu, C. and Maugin, G.A., ‘The energy of elastic defects: a distributional approach’,Proc. R. Soc. Lond.,A445 (1994) 23–37.

    Google Scholar 

  32. Maugin, G.A., ‘The principle of virtual power in continuum mechanics: application to coupled fields’,Acta Mechanica,35 (1980) 1–70.

    Google Scholar 

  33. Maugin, G.A., Pouget, J., Drouot, R. and Collet, B.,Nonlinear Electromechanical Couplings, J. Wiley, New York, 1992.

    Google Scholar 

  34. Ericksen, J.L.,Introduction to the Thermodynamics of Solids, Chapman and Hall, London, 1991.

    Google Scholar 

  35. Stolz, C., ‘Sur le problème d'évolution thermomécanique des solides à changement brutal de caractéristiques’,C.R. Acad. Sci. Paris,II-318 (1994) 1425–1428.

    Google Scholar 

  36. Gurtin, M.E., ‘The dynamics of solid-solid phase transitions, I. Coherent interfaces’,Arch. Rat. Mech. Anal.,123 (1993) 305–335.

    Google Scholar 

  37. Maugin, G.A. and Trimarco, C. ‘Configurational forces and coherent phase transitions in electromagnetothermoelastic solids’ (in preparation, 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugin, G.A., Trimarco, C. The dynamics of configurational forces at phase-transition fronts. Meccanica 30, 605–619 (1995). https://doi.org/10.1007/BF01557088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01557088

Key words

Navigation