Skip to main content
Log in

A semiempirical study of the prototropic tautomerism of hypoxanthine

  • Published:
Molecular Engineering

Abstract

The total and relative energies, bond order matrices and localized MOs for the eight possible tautomers of hypoxanthine (HYP) have been calculated, with full geometry optimization, using both AM1 and MNDO methods. The AM1 relative energies show that HYP(9,1), HYP(7,1) and HYP (9,10) are the predominant species at room temperature, the two former being in larger concentration that the latter. The calculated IR spectra for these species agree well with the reported spectrum in an isolated matrix, which has been interpreted in terms of the presence of these three tautomeric forms. The MNDO method does not predict the right order, and the more stable tautomer would be HYP(9,10). The calculated structure for the HYP(9,1) species shows that the molecule is essentially planar. The bond distances compare well with those of hypoxanthine hydrochloride and guanine and also correlate well with the calculated bond orders. The proton affinities for the three more stable tautomers have also been calculated. For HYP(9,1) the prefered site of protonation is N7, whereas for HYP(7,1) the protonation occurs rather at N9. These results agree well with15N and13C NMR studies in DMSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Izatt, J. J. Christensen and J. H. Ryttine:Chem. Rev. 71, 439 (1971).

    Google Scholar 

  2. G. W. Buchanan and M. J. Bell:Can J. Chem. 61, 2445 (1983).

    Google Scholar 

  3. R. L. Benoit and M. Frechette:Can. J. Chem. 63, 3053 (1985).

    Google Scholar 

  4. J. G. Contreras and J. B. Alderete:Bol. Soc. Chill. Quim. (in press).

  5. J. G. Contreras and J. B. Alderete:J. Mol. Struct. (THEOCHEM) 231, 257 (1991).

    Google Scholar 

  6. W. Cochran:Acta Cryst. 4, 81 (1951).

    Google Scholar 

  7. Tables of Interatomic Distances, Special Publication No. 11, Chemical Society (1958).

  8. P. G. Mezey and J. J. Ladik:Theoret. Chim. Acta 52, 129 (1979).

    Google Scholar 

  9. P. G. Mezey, J. J. Ladik and M. Barry:Theoret. Chim. Acta 54, 251 (1979).

    Google Scholar 

  10. J. G. Contreras, J. B. Alderete and J. A. Gnecco:J. Mol. Struct. (THEOCHEM) 251, 195 (1991).

    Google Scholar 

  11. G. C. Sheina, S. G. Stepanian, E. D. Radchenko and Y. P. Blagoi:J. Mol. Struct. 158, 275 (1987).

    Google Scholar 

  12. J. J. Aaron, M. D. Gaye, C. Parkanyi, N. S. Cho and L. V. Szentpaly:J. Mol. Struct. 156, 119 (1987).

    Google Scholar 

  13. A. B. Buda:J. Mol. Struct. (THEOCHEM) 149, 185 (1987).

    Google Scholar 

  14. R. Taylor and O. Kennard:J. Mol. Struct. 78, 1 (1982).

    Google Scholar 

  15. A. R. Katritzky:Physical Methods in Heterocyclic Chemistry 5, 312 (1972).

    Google Scholar 

  16. M. J. S. Dewar, G. P. Ford, M. L. McKee, H. S. Rzepa, W. Thiel and Y. Yamaguchi:J. Mol. Struct. 43, 135 (1978).

    Google Scholar 

  17. M. J. S. Dewar and K. M. Dieter:J. Am. Chem. Soc. 108, 8075 (1986).

    Google Scholar 

  18. J. F. Gal and P. C. Maria:Progress in Physical Organic Chemistry, R. W. Taft (editor)17, 159 (1990).

    Google Scholar 

  19. D. R. Stull and J. Prophet:Thermochemical Tables NSRDS-NBS37 (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contreras, J.G., Alderete, J.B. A semiempirical study of the prototropic tautomerism of hypoxanthine. Mol Eng 2, 29–36 (1992). https://doi.org/10.1007/BF00999520

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00999520

Key words

Navigation