Skip to main content
Log in

Can lysozymes mediate antibacterial resistance in plants?

  • Update Section
  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Audy P, Benhamou N, Trudel J, Asselin A: Immunocytochemical localization of a wheat germ lysozyme in wheat embryo and coleoptile cells and cytochemical study of its interaction with the cell wall. Plant Physiol 88: 1317–1322 (1988).

    Google Scholar 

  2. Audy P, Trudel J, Asselin A: Purification and characterization of lysozyme from wheat germ. Plant Sci 58: 43–50 (1988).

    Google Scholar 

  3. Awade A, DeTapia M, Didierjean L, Burkard G: Biological function of bean pathogenesis-related (PR3 and PR4) proteins. Plant Sci 63: 121–130 (1989).

    Google Scholar 

  4. Benhamou N, Grenier J, Asselin A, Legrand M: Immunogold localization of β-1,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1: 1209–1221 (1989).

    Google Scholar 

  5. Belhamou N, Joosten MHAJ, deWit PJGM: Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiol 92: 1108–1120 (1990).

    Google Scholar 

  6. Benhamou N: Cell surface interactions between tomato and Clavibacter michiganense subsp. michiganense: localization of some polysaccharides and hydroxyproline-rich glycoproteins in infected host leaf tissues. Physiol Mol Plant Path 38: 15–28 (1991).

    Google Scholar 

  7. Benhamou N: Spatio-temporal regulation of defense genes: immunocytochemistry. In: Fritig B, Legrand M (eds.) Developments in Plant Pathology, vol. 2: Mechanisms of Plant Defense Responses. Proceedings of the 2nd EFPP Conference (Strasbourg, France, August 1992), pp. 221–225. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).

    Google Scholar 

  8. Bernasconi P, Locher R, Pilet PE, Jollès J, Jollès P: Purification and N-terminal amino-acid sequence of a basic lysozyme from Parthenocissus quinquifolia cultured in vitro. Biochim Biophys Acta 915: 254–260 (1987).

    Google Scholar 

  9. Boller T: Antimicrobial functions of the plant hydrolases, chitinase and β-1,3-glucanase. In: Fritig B, Legrand M (eds) Developments in Plant Pathology, vol. 2: Mechanisms of Plant Defense Responses. Proceedings of the 2nd EFPP Conference (Strasbourg, France, August 1992), pp. 391–400. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).

    Google Scholar 

  10. Bretschneider KE, Gonella MP, Robeson DJ: A comparative light and electron microscopical study of compatible and incompatible interactions between Xanthomonas campestris pv. campestris and cabbage (Brassica oleracea). Physiol Mol Plant Pathol 34: 285–297 (1989).

    Google Scholar 

  11. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton C, Mauvais CJ, Broglie R: Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197 (1991).

    Google Scholar 

  12. Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K: Plant chitinases. Plant J 3: 31–40 (1993).

    Google Scholar 

  13. Cutt JR, Klessig D: Pathogenesis-related proteins. In: Boller T, Meins F (eds) Plant Gene Research: Genes Involved in Plant Defense, pp. 209–243. Springer-Verlag, Wien/New York (1992).

    Google Scholar 

  14. Destefano-Beltran L, Nagpala P, Jaeho K, Dodds JH, Jaynes JM: Genetic transformation of potato to enhance nutritional value and confer disease resistance. In: Dennis ES, Llewellyn DJ (eds) Plant Gene Research: Molecular Approaches to Crop Improvement, pp. 12–82. Springer-Verlag, Wien/New York (1991).

    Google Scholar 

  15. Dore I, Legrand M, Cornelissen BJC, Bol JF: Subcellular localization of acidic and basic PR proteins in tobacco mosaic virus-infected tobacco. Arch Virol 120: 97–107 (1991).

    Google Scholar 

  16. Düring K: Differential activity of endogenous plant bacteriolytic enzymes and bacteriophage T4 lysozyme. Submitted (1993).

  17. Düring K, Porsch P, Fladung M, Lörz H: Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3: 587–598 (1993).

    Google Scholar 

  18. Ferraris L, Abbattista Gentile I, Matta A: Activation of glycosidases as a consequence of infection stress in Fusarium wilt of tomato. J Phytopath 118: 317–325 (1987).

    Google Scholar 

  19. Glazer AN, Barel AO, Howard JB, Brown DM: Isolation and characterization of fig lysozyme. J Biol Chem 244: 3583–3589 (1969).

    Google Scholar 

  20. Hippe S, Düring K, Kreuzaler F: In situ localization of a foreign protein in transgenic plants by immunoelectron microscopy following high pressure freezing, freeze substitution and low temperature embedding. Eur J Cell Biol 50: 230–234 (1989).

    Google Scholar 

  21. Howard JB, Glazer AN: Studies on the physicochemical and enzymatic properties of Papaya lysozyme. J Biol Chem 242: 5715–5723 (1967).

    Google Scholar 

  22. Jach G, Logemann S, Wolf G, Oppenheim A, Chet I, Schell J, Logemann J: Expression of a bacterial chitinase leads to improved resistance of transgenic tobacco plants against fungal infection. Biopractice 1: 1–10 (1992).

    Google Scholar 

  23. Jollès P, Jollès J: What's new in lysozyme research? Mol Cell Biochem 63: 165–189 (1984).

    Google Scholar 

  24. Joosten MHAJ, deWit PJGM: Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiol 89: 945–951 (1989).

    Google Scholar 

  25. Kauffmann S, Legrand M, Geoffroy P, Fritig B: Biological function of ‘pathogenesis-related’ proteins: four RR proteins of tobacco have 1,3-β-glucanase activity. EMBO J 6: 3209–3212 (1987).

    Google Scholar 

  26. Kombrink E, Schröder M, Hahlbrock K: Several ‘pathogenesis-related 0 proteins in potato are 1,3-β-glucanases and chitinases. Proc Natl Acad Sci USA 85: 782–786 (1988).

    Google Scholar 

  27. Kombrink E, Hahlbrock K, Hinze K, Schröder M: Molecular responses of potato to infection by Phytophthora infestans. In: Smith CJ (ed) Biochemistry and Molecular Biology of Plant-Pathogen Interactions, pp. 237–254. Oxford University Press, Oxford (1991).

    Google Scholar 

  28. Legrand M, Kauffmann S, Geoffroy P, Fritig B: Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754 (1987).

    Google Scholar 

  29. Linthorst HJM, vanLoon LC, VanRossum CMA, Mayer A, Bol JF, vanRoekel JSC, Meulenhoff EJS, Cornelissen BJC: Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant Microbe Interact 3: 252–258 (1990).

    Google Scholar 

  30. Lyon CE, Lyon GD, Robertson WM: Observations on the structural modification of Erwinia carotovora subsp. atroseptica in rotted potato tuber tissue. Physiol Mol Plant Path 34: 181–187 (1989).

    Google Scholar 

  31. Majeau A, Trudel J, Asselin A: Diversity of cucumber chitinase isoforms and characterization of one seed basic chitinase with lysozyme activity. Plant Sci 68: 9–16 (1990).

    Google Scholar 

  32. Mauch F, Mauch-Mani B, Boller T: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol 88: 936–942 (1988).

    Google Scholar 

  33. Mauch F, Staehelin LA: Functional implications of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457 (1989).

    Google Scholar 

  34. Meins FJr, Ahl P: Induction of chitinase and β-1,3-glucanase in tobacco plants infected with Pseudomonas tabaci and Phytophthora parasitica var. nicotianae. Plant Sci 61: 155–161 (1989).

    Google Scholar 

  35. Meins FJr, Neuhaus JM, Sperisen C, Ryals J: The primary structure of plant pathogenesis-related glucanohydrolases and their genes. In: Boller T, Meins F (eds) Plant Gene Research: Genes Involved in Plant Defense, pp. 246–282. Springer-Verlag, Wien/New York (1992).

    Google Scholar 

  36. Melchers LS, Ponstein AS, Sela-Buurlage MB, Vloemans SA, Cornelissen BJC: In vitro anti-microbial activities of defense proteins and biotechnology. In: Fritig B, Legrand M (eds) Developments in Plant Pathology, vol. 2: Mechanisms of Plant Defense Responses. Proceedings of the 2nd EFPP Conference, (Strasbourg, France, August 1992), pp. 401–410. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).

    Google Scholar 

  37. Neuhaus JM, Ahl-Goy P, Hinz U, Flores S, Meins FJr: High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Plant Mol Biol 16: 141–151 (1991).

    Google Scholar 

  38. Nordeen RD, Sinden SL, Jaynes JM, Owens LD: Activity of cecropin SB37 against protoplasts from several plant species and their bacterial pathogens. Plant Sci 82: 101–107 (1992).

    Google Scholar 

  39. Pegg GF, Young DH: Changes in glycosidase activity and their relationship to fungal colonization during infection of tomato by Verticillium albo-atrum. Physiol Plant Path 19: 371–382 (1981).

    Google Scholar 

  40. Schlumbaum A, Mauch F, Vögeli U, Boller T: Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367 (1986).

    Google Scholar 

  41. Schröder M, Hahlbrock K, Kombrink E: Temporal and spatial patterns of β-1,3-glucanase and chitinase in potato leaves infected by Phytophthora infestans. Plant J 2: 161–172 (1992).

    Google Scholar 

  42. Spanu P, Boller T, Ludwig A, Wiemken A, Faccio A, Bonfante-Fasolo P: Chitinase in roots of mycorrhizal Allium porum: regulation and localization. Planta 177: 447–455 (1989).

    Google Scholar 

  43. Stintzi A, Geoffroy D, Bersuder D, Fritig B, Legrand M: cDNA cloning and expression studies of tobacco class III chitinases-lysozymes. In: Fritig B, Legrand M (eds), Developments in Plant Pathology, vol. 2: Mechanisms of Plant Defense Responses. Proceedings of the 2nd EFPP Conference (Strasbourg, France, August 1992), pp. 312–315. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).

    Google Scholar 

  44. Trudel J, Aidy P, Asselin A: Electrophoretic forms of chitinase activity in Xanthi-nc tobacco, healthy and infected with tobacco mosaic virus. Mol Plant-Microbe Int. 2: 315–324 (1989).

    Google Scholar 

  45. Trudel J, Potvin C, Asselin A: Expression of hen egg white lysozyme in transgenic tobacco. Plant Sci 87: 55–67 (1992).

    Google Scholar 

  46. Van denBulcke M, Bauw G, Castresana C, VanMontagu M, Vandekerckhove J: Characterization of vacuolar and extracellular β(1,3)-glucanases of tobacco: evidence for a strictly compartmentalized plant defense system. Proc Natl Acad Sci USA 86: 2673–2677 (1989).

    Google Scholar 

  47. vanLoon LC, Gerritsen YAM, Ritter CE: Identification, purification, and characterization of pathogenesis-related proteins from virus-infected Samsun NN tobacco leaves. Plant Mol Biol 9: 593–609 (1987).

    Google Scholar 

  48. vanLoon LC, Gerritsen YAM: Localization of pathogenesis-related proteins in infected and non-infected leaves of Samsun NN tobacco during the hypersensitive reaction to tobacco mosaic virus. Plant Sci 63: 131–140 (1989).

    Google Scholar 

  49. Wubben JP, Joosten MHA, vanKan JAL, deWit PJGM: Subcellular localization of plant chitinases and 1,3-β-glucanases in Cladosporium fulvum (syn. Fulvia fulva)-infected tomato. Physiol Mol Plant Path 41: 23–32 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düring, K. Can lysozymes mediate antibacterial resistance in plants?. Plant Mol Biol 23, 209–214 (1993). https://doi.org/10.1007/BF00021432

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00021432

Keywords

Navigation