Skip to main content
Log in

Introduction of the reconstructed yeast ferric reductase gene, refre1, into tobacco

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Fe(III) reduction at the root surface is an obligatory step in Fe uptake used by Strategy-I plants. The genes FRE1 and FRE2 are responsible for a similar mechanism of Fe acquisition in the cell membrane of Saccharomyces cerevisiae. We introduced the FRE1 gene into tobacco plants (Nicotiana tabacum L. cv. SR1). However, the transgenic tobacco showed no additional reductase activity, because the FRE1 transcripts from this transgenic tobacco were shorter than expected. Further investigation revealed that the coding region of the FRE1 gene was polyadenylated. We then reconstructed the whole sequence of the FRE1 gene and named it refre1 (reconstructed FRE1). The refre1 gene was introduced into tobacco plants. The transgenic plants carrying the refre1 gene produced full length mRNA and had constitutive ferric reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adang M J, Brody M S, Cardineau G, Eagan N, Roush R T, Shewmaker C K, Jones A, Oakes J V and McBride K E 1993 The reconstruction and expression of a Bacillus thuringiensis cryIIIA gene in protoplasts and potato plants. Plant Mol. Biol. 21, 1131-1145.

    Article  PubMed  CAS  Google Scholar 

  • Barton K A, Whitely H R and Yang N S 1987 Bacillus thuringiensis _-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85, 1103-1109.

    Article  PubMed  CAS  Google Scholar 

  • Bienfait H F 1987 Biochemical basis of iron efficiency reactions in plants. In Iron Transport in Microbes, Plants, and Animals. Eds G Winkelmann, D van der Helm, and J B Neilands. pp 339-349. VCH, Weinheim, Germany.

    Google Scholar 

  • Chaney R L, Brown J C and Tiffin L O 1972 Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 50, 208-213.

    PubMed  CAS  Google Scholar 

  • Church G M and Gilbert W 1984 Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991-1995.

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Roman D G, Anderson G J, Hinnebusch A G and Klausner R D 1992 Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc. Natl. Acad. Sci. USA 89, 3869-3873.

    Article  PubMed  CAS  Google Scholar 

  • Dix D R, Bridgham J T, Broderius M A, Byersdorfer C A and Eide D J 1994 The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J. Biol. Chem. 269, 26092-26099.

    PubMed  CAS  Google Scholar 

  • Dix D R, Bridgham J T, Broderius M A and Eide D J 1997 Characterization of the FET4 protein of yeast. J. Biol. Chem. 272, 11770-11777.

    Article  PubMed  CAS  Google Scholar 

  • Eide D J, Broderius M A, Fett J and Guerinot M L 1996 A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc. Natl. Acad. Sci. USA 93, 5624-5628.

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J and Simamoto K (1993) Insect resistant rice generated by introduction of a modi-fied _-endotoxin gene of Bacillus thuringiensis. Bio/Technology 11, 1151-1155.

    PubMed  CAS  Google Scholar 

  • Gallie D R and Serres J B 1997 Eyes off transcription! The wonderful world of post-transcriptional regulation. Plant Cell 9, 667-673.

    Article  PubMed  CAS  Google Scholar 

  • Georgatsou E and Alexandraki D 1994 Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 3065-3073.

    PubMed  CAS  Google Scholar 

  • Guo Z and Sherman 1996 30-end-forming signals of yeast mRNA. Trends Biochem. Sci. 21, 477-481.

    Article  PubMed  CAS  Google Scholar 

  • Helmer G, Casadaban M, Bevan M, Kayes L and Chilton M D 1984 A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli beta-galactosidase in sunflower and tobacco cells. Bio/Technology 2, 520-527.

    Article  CAS  Google Scholar 

  • Higuchi K, Nishizawa N K, Yamaguchi H, Römheld V, Marschner H and Mori S 1995 Response of nicotianamine synthase activity to Fe-deficiency in tobacco plants as compared with barley. J. Exp. Bot. 46, 1061-1063.

    CAS  Google Scholar 

  • Hincha D K, Sonnewald U, Willmitzer L and Schmitt J M 1996 The role of sugar accumulation in leaf frost hardiness-investigations with transgenic tobacco expressing a bacterial pyrophosphatase or a yeast invertase gene. J. Plant Physiol. 147, 604-610.

    CAS  Google Scholar 

  • Kozak M 1989 The scanning model for translation. J. Cell. Biol. 108, 229-241.

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Fritsch E F and Sambrook J 1982 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Marschner H, Römheld V and Kissel M 1986 Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9, 695-713.

    CAS  Google Scholar 

  • Mihashi S and Mori S 1989 Characterization of mugineic-acids-Fe transporter in Fe-deficient barley roots using the multicompartment transport box method. Biol. Metals 2, 146-154.

    Article  CAS  Google Scholar 

  • Murray M G and Thompson W F 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res. 8, 4321-4325.

    PubMed  CAS  Google Scholar 

  • Murray E E, Rocheleau T, EberleM, Stock C, Sekar V and Adang M J 1991 Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant Mol. Biol. 16, 1035-1050.

    Article  PubMed  CAS  Google Scholar 

  • Naito S, Dube P H and Beachy R N 1988 Differential expression of conglycinin alpha' and beta subunit genes in transgenic plants. Plant Mol. Biol. 11, 109-124.

    Article  CAS  Google Scholar 

  • Nayak P, GhoshMand Sen S K 1997 Transgenic elite indica rice plants expressing CryIAc _-endotoxin Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA 94, 2111-2116.

    Article  PubMed  CAS  Google Scholar 

  • Neilands J B 1981 Iron absorption and transport in microorganisms. Annu. Rev. Nutr. 1, 27-46.

    Article  PubMed  CAS  Google Scholar 

  • Ohme-Takagi M, Taylor C B, Newman T C and Green P J 1993 The effect of sequences with high AU content on mRNA stability in tobacco. Proc. Natl. Acad. Sci. USA 90, 11811-11815.

    Article  PubMed  CAS  Google Scholar 

  • Perlak F J, Deaton R W, Armstrong T A, Fuchs R L, Sims S R, Greenplate J T and Frischhoff D A 1990 Insect resistant cotton plants. Bio/Technology 8, 939-943.

    Article  PubMed  CAS  Google Scholar 

  • Perlak F J, Fuchs R L, Dean D A, McPherson S L and Fischhoff D A 1991 Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324-3328.

    Article  PubMed  CAS  Google Scholar 

  • Perlak F J, Stone T B, Muskopf Y M, Peterson L J, Parker G B, McPherson S A, Wyman J, Love S, Reed G, Biever D and Fischhoff D A 1993 Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol. Biol. 22, 313-321.

    Article  PubMed  CAS  Google Scholar 

  • Römheld V and H Marschner 1983 Mechanisms of iron uptake by peanut plant. I. FeIII reduction, chelate splitting, and release of phenolics. Plant Physiol. 71, 949-954.

    PubMed  Google Scholar 

  • Samuelsen A I, Martin R C, Mok D W S and Mok M C 1998 Expression of the Yeast FRE Genes in Transgenic Tobacco. Plant Physiol. 118, 51-58.

    Article  PubMed  CAS  Google Scholar 

  • Stearman R, Yaun D S, Yamaguchi-Iwai Y, Klausner R D and Dancis A 1996 A permease-oxidase complex involved in highaffinity iron uptake in yeast. Science 271, 1552-1557.

    PubMed  CAS  Google Scholar 

  • Takagi S 1976 Naturally occurring iron-chelating compounds in oatand rice-root washings. Soil Sci. Plant Nutr. 22, 423-433.

    CAS  Google Scholar 

  • Takagi S, Nomoto K and Takemoto T 1984 Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J. Plant Nutr. 7, 469-477.

    CAS  Google Scholar 

  • von Heijne G 1983 Patterns of amino acids near signal-sequence cleavage sites. Eur. J. Biochem. 133, 17-21

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Ueda T and Messing J 1995 The formation of mRNA 30-ends in plants. Plant J. 8, 323-329.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Fujiwara T and Mori S 1995 Genetic introduction of the gene coding yeast ferric reductase into tobacco plants. In International Conference on BioIron, Asheville, NC (Abstracts). p 84.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oki, H., Yamaguchi, H., Nakanishi, H. et al. Introduction of the reconstructed yeast ferric reductase gene, refre1, into tobacco. Plant and Soil 215, 211–220 (1999). https://doi.org/10.1023/A:1004591012061

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004591012061

Navigation