Skip to main content
Log in

Sunspot velocity correlations: Are they due to Reynolds stresses or to the Coriolis force on rising flux tubes?

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Observations have consistently pointed out that the longitudinal and latitudinal motions of sunspots are correlated. The magnitude of the covariance was found to increase with latitude, and its sign was found to be positive in the N-hemisphere and negative in the S-hemisphere. This correlation was believed to be due to the underlying turbulence where the sunspot flux tubes are anchored, and the covariance had the right sign and magnitude needed to explain the transfer of angular momentum toward the equator through Reynolds stresses.

Here we present an alternate explanation for these sunspot velocity correlations: It is believed that the dynamo operates in a thin overshoot layer beneath the base of the convection zone, and the flux tubes generated there produce sunspots at the photosphere. By studying the dynamics of flux tubes emerging from the base of the convection zone to the photosphere, we show that these velocity correlations of sunspots could be merely a consequence of the effect of Coriolis force on rising flux tubes. The effect of the Coriolis force, as demonstrated by even a back-of-the-envelope calculation, is to push the faster rotating spots equatorward and the slower rotating spots poleward, giving rise to a correlation in their longitudinal and latitudinal velocities, which is positive in the N-hemisphere and negative in the S-hemisphere. The increase in the correlation with latitude is due to the increase in magnitude of the Coriolis force. Hence we show that these velocity correlations might have nothing to do with the Reynolds stresses of the underlying turbulence.

We present analyses of observations, and show that the covariances of plages are an order of magnitude higher than the sunspot covariances. If plages and sunspots share the same origin, and if their horizontal velocity correlations are wholly due to the effect of Coriolis force on rising flux tubes, then the study of their dynamics suggests that the flux tubes that form plages should have diameters of a couple of thousand km at the base of the convection zone and remain intact until they reach the photosphere, whereas sunspots should be formed by a collection of small flux tubes (each measuring about a hundred km in diameter), that rise through the convection zone as individual elements and coalesce when they emerge through the photosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belvedere, G., Godoli, G., Motta, S., Paternò, L., and Zappalà, R. A.: 1976,Solar Phys. 46, 23.

    Google Scholar 

  • Canuto, V. M., Minotti, F. O., and Schilling, O.: 1994,Astrophys. J. 425, 303.

    Google Scholar 

  • Chou, D. Y. and Fisher, G. H: 1989,Astrophys. J. 341, 533.

    Google Scholar 

  • Choudhuri, A. R.: 1989,Solar Phys. 123, 217.

    Google Scholar 

  • Choudhuri, A. R. and D'Silva, S.: 1990,Astron. Astrophys. 239, 326.

    Google Scholar 

  • Choudhuri, A. R. and Gilman, P. A.: 1987,Astrophys. J. 316, 788.

    Google Scholar 

  • Coffey, H. E. and Gilman, P. A.: 1969,Solar Phys. 9, 423.

    Google Scholar 

  • D'Silva, S.: 1993,Astrophys. J. 407, 385.

    Google Scholar 

  • D'Silva, S. and Choudhuri, A. R.: 1991,Solar Phys. 136, 201.

    Google Scholar 

  • D'Silva, S. and Choudhuri, A. R.: 1993,Astron. Astrophys. 272, 621.

    Google Scholar 

  • D'Silva, S. and Howard, R.: 1993,Solar Phys. 148, 1.

    Google Scholar 

  • D'Silva, S. and Howard, R.: 1994,Solar Phys. 151, 213.

    Google Scholar 

  • Durney, B. R.: 1991,Astrophys. J. 378, 378.

    Google Scholar 

  • Durney, B. R.: 1993,Astrophys. J. 407, 367.

    Google Scholar 

  • Fan, Y., Fisher, G. H., and DeLuca, E. E.: 1993,Astrophys. J. 405, 390.

    Google Scholar 

  • Fan, Y., Fisher, G. H., and McClymont, A. N.: 1994,Astrophys. J., in press.

  • Gilman, P. A.: 1974,Ann. Rev. Astron. Astrophys. 12, 47.

    Google Scholar 

  • Gilman, P. A. and Howard, R.: 1984,Solar Phys. 93, 171.

    Google Scholar 

  • Hale, G. E., Ellerman, F., Nicholson, S. B., and Joy, A. H.: 1919,Astrophys. J. 49, 153.

    Google Scholar 

  • Harvey, K. L.: 1993, Thesis: Magnetic Bipoles on the Sun, University of Utrecht, Ch. 3, p. 61.

  • Howard, R. F.: 1989,Solar Phys. 123, 271.

    Google Scholar 

  • Howard, R. F.: 1990,Solar Phys. 126, 299.

    Google Scholar 

  • Howard, R. F.: 1991a,Solar Phys. 131, 259.

    Google Scholar 

  • Howard, R. F.: 1991b,Solar Phys. 134, 233.

    Google Scholar 

  • Howard, R. F.: 1991c,Solar Phys. 135, 43.

    Google Scholar 

  • Howard, R. F.: 1991d,Solar Phys. 135, 327.

    Google Scholar 

  • Howard, R. F.: 1992a,Solar Phys. 137, 205.

    Google Scholar 

  • Howard, R. F.: 1992b,Solar Phys. 142, 47.

    Google Scholar 

  • Howard, R. F.: 1992c,Solar Phys. 142, 233.

    Google Scholar 

  • Howard, R. F. and Gilman, P. A.: 1986,Astrophys. J. 307, 389.

    Google Scholar 

  • Howard, R. F., Gilman, P. A., and Gilman P. I.: 1984,Astrophys. J. 283, 385.

    Google Scholar 

  • Howard, R. F., Kichatinov, L. L., Bogart, R. S., and Ribes, E.: 1991, in A. N. Cox, W. C. Livingston, and M. S. Matthews (eds.),Solar Interior and Atmosphere, Arizona University Press, p. 748.

  • Kichatinov, L. L. and Rüdiger, G.: 1993,Astron. Astrophys. 276, 96.

    Google Scholar 

  • Komm, R. W., Howard, R. F., and Harvey, J. W.: 1994,Solar Phys. 151, 15.

    Google Scholar 

  • Meyer, F., Schmidt, H. U., Weiss, N. O., and Wilson, P. R.: 1974,Monthly Notices Roy. Astron. Soc. 169, 35.

    Google Scholar 

  • Moreno-Insertis. F.: 1986,Astron. Astrophys. 166, 291.

    Google Scholar 

  • Moreno-Insertis, F.: 1992, in J. H. Thomas and N. O. Weiss (eds.),Sunspots: Theory and Observations, Kluwer Academic Publishers, Dordrecht, Holland, p. 385.

    Google Scholar 

  • Moreno-Insertis, F., Caligari, P., and Schüssler, M.: 1994,Solar Phys. 153, 449.

    Google Scholar 

  • Nesme-Ribes, E., Ferreira, E. N., and Vince, I.: 1993,Astron. Astrophys. 276, 211.

    Google Scholar 

  • Parker, E. N.: 1979,Cosmical Magnetic Fields, Clarendon Press, Oxford, Section 8.9.

    Google Scholar 

  • Parker, E. N.: 1987,Astrophys. J. 312, 868.

    Google Scholar 

  • Schrijver, C. J.: 1987,Astron. Astrophys. 180, 211.

    Google Scholar 

  • chüssler, M. Caligari, P., Ferriz-Mas, A., and Moreno-Insertis, F.: 1994,Astron. Astrophys. 281, L69.

    Google Scholar 

  • Spiegel, E. A. and Weiss, N. O.: 1980,Nature 287, 616.

    Google Scholar 

  • Spruit, H. C.: 1981,Astron. Astrophys. 98, 155.

    Google Scholar 

  • Tuominen, I., and Rüdiger, G.: 1989,Astron. Astrophys. 217, 217.

    Google Scholar 

  • van Driel-Gesztelyi, L. and Petrovay, K.: 1990,Solar Phys. 126, 285.

    Google Scholar 

  • Wang, Y. M., Nash, A. G., and Sheeley, N. R.: 1989,Astrophys. J. 347, 529.

    Google Scholar 

  • Ward, F.: 1965,Astrophys. J. 141, 534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Silva, S., Howard, R.F. Sunspot velocity correlations: Are they due to Reynolds stresses or to the Coriolis force on rising flux tubes?. Sol Phys 159, 63–88 (1995). https://doi.org/10.1007/BF00733032

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00733032

Keywords

Navigation