Skip to main content
Log in

Polymerized isomers of CuCl2(C8H12N2S2). The X-ray crystal structures of dichloro(5,5′-6,6′-tetrahydro-2,2′-bi-4H-1,3-thiazine-N 3, N 3′)copper(II) and di-μ-chloro-bis[chloro(5,5′-6,6′-tetrahydro-2, 2′-bi-4H-1,3-thiazine-N 3,N 3′)copper(II)]

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

The monomer in the title was obtained as a first crop and the dimer as a second crop from a 95% ethanolic solution of CuCl2 and 5,5′-6,6′-tetrahydro-2,2′-bi-4H-1,3-thiazine (2,2′-bi-2-thiazine) in the mole ratio 1∶1.1. The monomeric crystals are blue, dichloro(5,5′-6,6′-tetrahydro-2,2′-bi-4H-1, 3-thiazine- N 3,N 3′)copper(II).

The crystal consists of monomeric molecules with no short contacts to neighbouring molecules. The Cu atoms occupy special positions on 2-fold axes. The bidentate 2,2′-bi-2-thiazine bonds via N as it assumes a cis configuration with a twist of 10.3° about the inter-ring C—C bond. The Cu—N distance is 2.013(5) Å, and Cu—Cl is 2.231(2) Å. Coordination around Cu is slightly distorted square planar with a dihedral angle of 5.8(2)° between the Cu, N, Cl plane and Cu, N′, Cl′ plane. The dimeric crystals are green, di-μ-chloro-bis[chloro(5,5′-6,6′-tetrahydro-2,2′-bi-4H-1, 3-thiazine-N 3,N 3′)copper(II)].

The structure consists of discrete centrosymmetric dimers [CuCl2(C8H12N2S2)]2. Coordination around Cu is distorted square pyramidal (τ = 0.32) with two N atoms from the bidentate 2,2′-bi-2-thiazine occupying adjacent basal sites, and two Cl atoms occupying the other two basal sites. The average Cu—N distance is 2.028(4) Å, Cu—Cl(1) is 2.284(2) Å, Cu—Cl(2) is 2.239(1) Å. Dihedral angle between the CuN2 and CuCl2 planes is 23.7°. Cl(1)′ of the adjacent inversion-related monomer, CuCl2-(C8H12N2S2), occupies the apical position. Cu—Cl(1)′, r = 2.618(2) Å. Dimensions in the chloride-bridged planar dimeric moiety, Cu2Cl2, are Cu ⋯ Cu′ 3.449(1) Å; Cl(1) ⋯ Cl(1)′ 3.498(2) Å; Cu—Cl(1)—Cu′, φ = 89.2(1)°, φ/r = 34.07°/Å. The two saturated rings in C8H12N2S2 show a twist of 11.4° about the inter-ring C—C bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Tomalia and J. N. Paige, J. Org. Chem., 38, 3949 (1973).

    Google Scholar 

  2. R. S. Glass, M. Sabahi, M. Hojjatle and G. S. Wilson, Inorg. Chem., 26, 2194 (1987).

    Google Scholar 

  3. J. G. Haasnoot, W. L. Driessen and J. Reedijk, Inorg. Chem., 23, 2803 (1984).

    Google Scholar 

  4. J. Nelson, S. M. Nelson and W. D. Perry, J. Chem. Soc., Dalton Trans., 1282 (1976).

  5. R. A. Johnson, Diss. Abstr. Int. B, 43, 1841 (1982).

    Google Scholar 

  6. J. C. Huffman and A. P. Sattelberger, Cryst. Struct. Commun., 10, 1535 (1981).

    Google Scholar 

  7. M. G. B. Drew, T. R. Pearson, B. P. Murphy and S. M. Nelson, Polyhedron, 2, 269 (1983).

    Google Scholar 

  8. R. A. Johnson, R. B. von Dreele and T. M. Brown, Inorg. Chem., 23, 4302 (1984).

    Google Scholar 

  9. W. E. Hatfield, in L. V. Interrate (Ed.), Extended Interaction Between Metal Ions, ACS Symp. Ser., 5, 108 (1974).

  10. D. J. Hodgson, Prog. Inorg. Chem., 19, 173 (1975).

    Google Scholar 

  11. P. J. Hay, J. C. Thibeault and R. Hoffmann, J. Am. Chem. Soc., 97, 4884 (1975).

    Google Scholar 

  12. V. F. Duckworth, D. P. Graddon, N. C. Stephenson and E. C. Watton, Inorg. Nucl. Chem. Lett., 3, 557 (1967).

    Google Scholar 

  13. D. H. Svedung, Acta Chem. Scand., 23, 2865 (1969).

    Google Scholar 

  14. N. T. Watkins, E. E. Dixon, V. H. Crawford, K. T. McGregor and W. E. Hatfield, J. Chem. Soc., Chem. Commun., 133 (1973).

  15. V. F. Duckworth and N. C. Stephenson, Acta Crystallogr., B25, 1995 (1969).

    Google Scholar 

  16. D. Y. Jetter, D. J. Hodgson and W. E. Hatfield, Inorg. Chim. Acta, 5, 257 (1971).

    Google Scholar 

  17. W. E. Marsh, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 21, 2679 (1982).

    Google Scholar 

  18. E. Stetten and A. Apeland, Acta Crystallogr., B31, 2019 (1975).

    Google Scholar 

  19. E. D. Estes, W. E. Estes, W. H. Hatfield and D. J. Hodgson, Inorg. Chem., 14, 106 (1975).

    Google Scholar 

  20. D. W. Phelps, W. H. Goodman and D. J. Hodgson, Inorg. Chem., 15, 2266 (1976).

    Google Scholar 

  21. P. G. Beckingsale, A. T. Morcom, C. E. F. Rickard and T. N. Waters, J. Chem. Soc., Dalton Trans., 2135 (1977).

  22. G. R. Desiraju, H. R. Luss and D. L. Smith, J. Am. Chem. Soc., 100, 6375 (1978).

    Google Scholar 

  23. B. Cohen, C. C. Ou, R. A. Lalancette, W. Borowski, J. A. Potenza and H. J. Schugar, Inorg. Chem., 18, 217 (1979).

    Google Scholar 

  24. D. D. Swank, G. F. Needham and R. D. Willett, Inorg. Chem., 18, 761 (1979).

    Google Scholar 

  25. M. R. Churchill and J. P. Hutchinson, Cryst. Struct. Commun., 9, 1209 (1980).

    Google Scholar 

  26. S. P. Knap, B. H. Toby, M. Sebastian, K. Krogh-Jespersen and J. A. Potenza, J. Org. Chem., 46, 2490 (1981).

    Google Scholar 

  27. M. Mégnamisi-Bélombé and H. Endres, Acta Crystallogr., C39, 707 (1983).

    Google Scholar 

  28. F. Nepveu, F. J. Bormuth and L. Walz, J. Chem. Soc., Dalton Trans., 1213 (1986).

  29. G. DeMunno, G. Denti and P. Dapporto, Inorg. Chim. Acta, 74, 199 (1983).

    Google Scholar 

  30. J. A. Carrabine and M. Sundaralingam, J. Am. Chem. Soc., 92, 369 (1970).

    Google Scholar 

  31. M. Sundaralingam and J. A. Carrabine, J. Mol. Biol., 287 (1971).

  32. J. P. Declercq, M. Debbaudt and M. Van Meerssche, Bull. Soc. Chim. Belg., 80, 527 (1971).

    Google Scholar 

  33. R. F. Drake, V. H. Crawford, N. W. Laney and W. E. Hatfield, Inorg. Chem., 13, 1246 (1974).

    Google Scholar 

  34. D. J. Hodgson, P. K. Hale and W. E. Hatfield, Inorg. Chem., 10, 1061 (1971).

    Google Scholar 

  35. K. T. McGregor, D.B. Losee, D. J. Hodgson and W. E. Hatfield, Inorg. Chem., 13, 756 (1974).

    Google Scholar 

  36. W. E. Marsh, K. C. Patel, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 22, 511 (1983).

    Google Scholar 

  37. R. E. Norman, N. J. Rose and R. E. Stenkamp, Acta Crystallogr., C46, 1 (1990).

    Google Scholar 

  38. J. D. Dunitz, Acta Crystallogr., 10, 307 (1957).

    Google Scholar 

  39. M. Mágnamisi-Bélombé, P. Singh, D. E. Bolster and W. E. Hatfield, Inorg. Chem., 23, 2578 (1984).

    Google Scholar 

  40. H. Endres, Acta Crystallogr., C39, 1192 (1983).

    Google Scholar 

  41. J. A. Bertrand and J. A. Kelly, J. Am. Chem. Soc., 88, 4746 (1966).

    Google Scholar 

  42. T. Kilborn and J. D. Dunitz, Inorg. Chim. Acta, 1, 209 (1967).

    Google Scholar 

  43. J. Pickardt and N. Rautenberg, Z. Naturforsch., 37b, 1355 (1982).

    Google Scholar 

  44. J. T. Guy, Jr., J. C. Cooper, R. D. Gilardi, J. L. Flippen-Anderson and C. F. George, Jr., Inorg. Chem., 27, 635 (1988).

    Google Scholar 

  45. A. Erdonmez, J. H. Van Diemen-Rudolf, A. G. De Graaff and J. Reedijk, Acta Crystallogr., C44, 402 (1990).

    Google Scholar 

  46. N. Walker and D. Stuart, Acta Crystallogr., A39, 158 (1983).

    Google Scholar 

  47. G. M. Sheldrick, SHELX-86, Program for Crystal Structure Determination University of Göttingen, 1986.

  48. G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, 1976.

  49. A. L. Spek in D. Sayre (Ed.), Computational Crystallography, Clarendon Press, Oxford, 1982, p. 528.

    Google Scholar 

  50. C. K. Johnson, ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, 1976.

    Google Scholar 

  51. W. D. S. Motherwell and W. Clegg, PLUTO, University ofCambridge, 1978.

  52. P. J. Burke, K. Henrick and D. R. McMillin, Inorg. Chem., 21, 1881 (1982).

    Google Scholar 

  53. A. Lavery, S. M. Nelson and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 2975 (1987).

  54. J. Lisowski, M. Grzeszezuk and L. Latos-Grażynski, Inorg. Chim. Acta, 161, 153(1989).

    Google Scholar 

  55. P. M. Colman, H. C. Freeman, J. M. Guss, M. Murata, V. A. Nords, J. A. M. Ramshaw and M. P. Venkatappa, Nature, 272, 319 (1978).

    Google Scholar 

  56. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1349 (1984).

  57. R. D. Shannon, Acta Crystallogr., A32, 751 (1976).

    Google Scholar 

  58. D. J. Hodgson and E. Pederson, Acta Chem. Scand., A36, 281 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddad, S.F., Pickardt, J. Polymerized isomers of CuCl2(C8H12N2S2). The X-ray crystal structures of dichloro(5,5′-6,6′-tetrahydro-2,2′-bi-4H-1,3-thiazine-N 3, N 3′)copper(II) and di-μ-chloro-bis[chloro(5,5′-6,6′-tetrahydro-2, 2′-bi-4H-1,3-thiazine-N 3,N 3′)copper(II)]. Transition Met Chem 18, 377–384 (1993). https://doi.org/10.1007/BF00208176

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00208176

Keywords

Navigation