Skip to main content
Log in

Barrier performance of concrete: A review of fluid transport theory

  • RILEM Technical Committees
  • TC-146: Tightness of Concrete with Respect to Fluids
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. American Petroleum Institute, ‘Recommended Practice for Determining Permeability of Porous Media’, RP-27, 3rd Edn (API, Dallas, 1952).

    Google Scholar 

  2. Aufrecht, M. and Reinhardt, H.-W., ‘Concrete as a second surrounding system against hazardous organic fluids’,Otto Graf J. 2 (1991) 37–49.

    Google Scholar 

  3. Bamforth, P. B., ‘The relationship between permeability coefficients for concrete obtained using liquid and gas’,Mag. Concr. Res. 39 (1987) 3–11.

    Google Scholar 

  4. Idem, ‘The water permeability of concrete and its relationship with strength’,Mag. Concr. Res. 43 (1991) 233–241.

    Google Scholar 

  5. Barenblatt, G. I., Entov, V. M. and Ryzhik, V. V., ‘Theory of Fluid Flows through Natural Rocks’ (Kluwer, Dordrecht, 1990).

    MATH  Google Scholar 

  6. Bear, J. and Hachmat, Y., ‘Introduction to Modeling of Transport Phenomena in Porous Media’ (Kluwer, Dordrecht, 1991).

    MATH  Google Scholar 

  7. Bradley, H. B. (ed.), ‘Petroleum Engineering Handbook’ (Society of Petroleum Engineers, Richardson TX, 1987).

    Google Scholar 

  8. Brady, B. and other, ‘Cracking rock: progress in fracture treatment design’,Oilfield Rev. 4 (1992) 4–17.

    MATH  Google Scholar 

  9. Buckley, S. E. and Leverett, M. C., ‘Mechanism of fluid displacement in sands’,Am. Inst. Mining Met. Engrs (Petroleum Development and Technology) 146 (1942) 107–116.

    Google Scholar 

  10. Carslaw, H. S. and Jaeger, J. C., ‘Conduction of Heat in Solids’, 2nd Edn (Clarendon Press, Oxford, 1959).

    Google Scholar 

  11. Comité Européen du Béton, ‘Durable Concrete Structures’, (Telford, London, 1992).

    Google Scholar 

  12. Daïan, J.-F., ‘Condensation and isothermal water transfer in cement mortar: Part I—pore size distribution, equilibrium water condensation and imbibition’,Transport Porous Media 3 (1988) 563–589.

    Article  Google Scholar 

  13. Dullien, F. A. L., ‘Porous Media: Fluid Transport and Pore Structure’, 2nd Edn (Academic Press, New York, 1992).

    Google Scholar 

  14. Eley, D. D. and Pepper, D. C., ‘A dynamic determination of adhesion tension’,Trans. Faraday Soc. 42 (1946) 697–702.

    Article  Google Scholar 

  15. Fehlhaber, T., Reinhardt, H.-W., Drawer, O., Sosoro, M. and Krumpe, A., ‘Transportphänomene organischer, wasserlöslicher Flüssigkeiten in Beton’, Research report 691/4-1 (Universities of Darmstadt and Stuttgart, 1991).

  16. Feldman, R. F., ‘Pore structure, permeability and diffusivity as related to durability’, Eighth International Congress on the Chemistry of Cement, Rio de Janeiro 1986, Vol. 1, pp. 336–356.

  17. Garboczi, E. J., ‘Permeability, diffusivity and microstructural parameters: a critical review’,Cement Concr. Res. 20 (1990) 591–601.

    Article  Google Scholar 

  18. Gummerson, R. J., Hall, C. and Hoff, W. D., ‘Water movement in porous building materials—II. Hydraulic suction and sorptivity of brick and other masonry materials’,Building Environ. 15 (1980) 101–108.

    Article  Google Scholar 

  19. Idem ‘Capillary water transport in masonry structures: building construction applications of Darcy's law’,Constr. Papers 1 (1980) 17–27.

    Google Scholar 

  20. Gummerson, R. J., Hall, C., Hoff W. D., Hawkes, R., Holland, G. N. and Moore, W. S., ‘Unsaturated water flow within porous materials observed by NMR imaging’,Nature 281 (1979) 56–7.

    Article  Google Scholar 

  21. Hall, C., ‘The water sorptivity of mortars and concretes: a review’,Mag. Concr. Res. 41 (1989) 51–61.

    Article  Google Scholar 

  22. Idem,, ‘Water movement in porous building materials —IV. The initial surface absorption and the sorptivity’.Building Environ. 16 (1981) 201–207.

    Article  Google Scholar 

  23. Hall, C. and Hoff, W. D., ‘Dampness in dwellings: performance requirements for remedial treatments’, Proceedings 3rd ASTM/CIB/RILEM Symposium on the Performance Concept in Building, Lisbon, 1982.

  24. Hall, C., Hoff, W. D. and Nixon, M. R., ‘Water movement in porous building materials—VI. Evaporation and drying in brick and block materials’,Building Environ. 19 (1984) 13–20.

    Article  Google Scholar 

  25. Hall, C., Hoff, W. D. and Wilson, M. A., ‘Effect of non-sorptive inclusions on capillary absorption by a porous material’,J. Phys. D. Appl. Phys 26 (1993) 31–34.

    Article  Google Scholar 

  26. Hall, C. and Kalimeris, A. N., ‘Water movement in porous building materials—V. Absorption and shedding of rain by building surfaces’,Building Environ. 19 (1982) 13–20.

    Article  Google Scholar 

  27. Idem, ‘Rain absorption and run-off on porous building surfaces’,Can. J. Civil Engng 11 (1984) 108–111.

    Article  Google Scholar 

  28. Hall, C. and Kam Ming Tse T., ‘Water movement in porous building materials—VII. The sorptivity of mortars’,Building Environ. 21 (1986) 113–118.

    Article  Google Scholar 

  29. Hall, C., Skeldon, M. and Hoff, W. D., ‘The sorptivity of brick: dependence on initial water content’,J. Phys. D Appl. Phys 16 (1983) 1875–1880.

    Article  Google Scholar 

  30. Hearn, N., ‘A recording permeameter for measuring time-sensitive permeability of concrete’, In ‘Advances in Cementitious Materials’, edited by S. Mindess (American Ceramic Society, Westerville, OH, 1990) pp. 463–475.

    Google Scholar 

  31. l'Anson, S. J. and Hoff, W. D., ‘Chemical injection remedial treatments for rising damp—I. The interaction of damp-proofing materials with porous building materials’,Building Environ. 23 (1988) 171–178.

    Article  Google Scholar 

  32. Kalimeris, A. N., ‘Water flow processes in porous building materials’, Ph.D. thesis, University of Manchester, 1984.

  33. Klinkenberg, L. J., ‘The permeability of porous media to liquids and gases’.Drilling Prod. Prac. (1941) 200–211.

  34. Lever, A. and Dawe, R. A., ‘Water-sensitivity and migration of fines in the Hopeman sandstone’,J. Petrol. Geol. 7 (1984) 97–108.

    Google Scholar 

  35. Lugg, G. A., ‘Diffusion coefficients of some organic and other vapours in air’,Anal. Chem. 40 (1968) 1072–1077.

    Article  Google Scholar 

  36. Marle, C. M., ‘Multiphase Flow in Porous Media’, Institut français du pétrole (Editions Technip, Paris, 1981).

    Google Scholar 

  37. Marshall, T. J. and Holmes, J. W., ‘Soil Physics’, 2nd Edn (Cambridge, 1988).

  38. Mills, R. H., ‘The permeability of concrete for reactor containment vessels’, Publication 84-01 (University of Toronto, July 1983).

  39. Idem,, ‘Gas and water permeability of concrete for reactor buildings—small specimens’ Research report (Atomic Energy Control Board, Ottawa, March, 1986).

    Google Scholar 

  40. Idem, Mills, R. H., ‘Mass Transfer, of Gas and Water through Concrete’, SP-100, Vol. 1 (American Concrete Institute, 1987) pp. 621–644.

  41. Idem, ‘Gas and water permeability tests of 25 years old concrete from the NPD nuclear generating station’ Research report (Atomic Energy Control Board, Ottawa, May 1990).

    Google Scholar 

  42. Muskat, M., ‘The Flow of Homogeneous Fluids through Porous Media’ (McGraw-Hill, 1937).

  43. Nauman, E. B. and Buffham, B. A., ‘Mixing in Continuous Flow Systems’ (Wiley, New York, 1983).

    Google Scholar 

  44. Numerical physical property data are available from a number of databases, including TRCTHERMO (Thermodynamic Research Center) and PPDS (Institution of Chemical Engineers).

  45. Nurmi, R., ‘Permeability in sandstones’,Schlumberger Tech. Rev. 32 (1984) 4–9; ‘Pore structure in carbonate rocks’,Ibid. Schlumberger Tech. Rev. 32 (1984). 11–23.

    Google Scholar 

  46. Padday, J. F. (ed.) ‘Wetting, Spreading and Adhesion’ (Academic Press, New York, 1975).

    Google Scholar 

  47. Perkins, T. K. Jr. and Johnson, O. C., ‘A review of diffusion and dispersion in porous media’,Soc. Petrol. Engrs J. 3 (1963) 70–84.

    Google Scholar 

  48. Philip, J. R., ‘Numerical solutions of equations of the diffusion type with diffusivity concentration-dependent’,Trans. Faraday Soc. 51 (1955) 885–892.

    Article  MathSciNet  Google Scholar 

  49. Idem, ‘The theory of infiltration: 6. Effect of water depth over soil’,Soil Sci. 85 (1958) 278–286.

    Google Scholar 

  50. Idem, ‘The theory of infiltration: 7’,Ibid. 85 (1958) 333–337.

    Article  Google Scholar 

  51. Idem, Philip, J. R., ‘Absorption and infiltration in two- and three-dimensional systems’, Unesco symposium on water in the unsaturated zone, Wageningen 1966 (International Association for Scientific Hydrology) Vol. 1, pp. 503–525.

  52. Idem, Philip, J. R., ‘The dynamics of capillary rise’,Ibid., Soil Sci. Vol. 2, pp. 559–564.

  53. Pražák J., Tywoniak J., Peterka, F. and Šlonk, T., ‘Description of transport of liquid in porous media—a study based on neutron radiography data’,Int. J. Heat Mass Transfer 33 (1990) 1105–1120.

    Article  Google Scholar 

  54. Quénard D. and Sallée, H., ‘The transport of condensible water vapour through microporous building materials’, IDS ‘88, International Drying Symposium, Versailles, September 1988.

  55. Idem, Quénard D. and Sallée, H., ‘A gamma-ray spectrometer for measurement of the water diffusivity of cementitious materials’, In ‘Pore Structure and Permeability of Cementitious Materials’, edited by L. R. Roberts and J. P. Skalny, MRS symposium series No. 137 (Materials Research Society, 1989).

  56. Quénard, D., Sallée, H. and Cope, R., ‘Caractérisation microstructurale et hygrothermique des matériaux de construction’ (CIB Paris, 1989).

    Google Scholar 

  57. Ramakrishnan, T. S. and Cappiello, A., ‘A new technique to measure static and dynamic properties of a partially saturated porous medium’,Chem. Engng Sci. 46 (1991) 1157–1163.

    Article  Google Scholar 

  58. Reinhardt, H.-W., ‘Transport of chemicals through concrete’, In ‘Materials Science of Concrete III’, edited by J. Skalny (American Ceramic Society, Westerville, OH, 1992).

    Google Scholar 

  59. Reinhardt, H.-W., Aufrecht, M. and Sosoro, M., ‘The potential of concrete as a secondary barrier against hazardous organic fluids’, Concrete 2000, Dundee, September 1993.

  60. See for example Roberts, L. R. and Skalny, J. P. (eds), ‘Pore Structure and Permeability of Cementitious Materials’, Materials Research Society Symposium No. 137 (Materials Research Society, Pittsburgh, 1989).

    Google Scholar 

  61. Rose, D. A., ‘Water movement in porous materials: Part 2—The separation of the components of water movement’,Brit. J. app.. Phys. 14, (1963) 491–496.

    Article  Google Scholar 

  62. Idem,, ‘Hydrodynamic dispersion in porous materials’,Soil Sci. 123 (1977) 277–283.

    Google Scholar 

  63. Idem,, ‘Soil water: quantities, units and symbols’,J. Soil Sci.30 (1979) 1–15.

    Article  Google Scholar 

  64. Scheidegger, A. E., ‘The Physics of Flow through Porous Media’, 3rd Edn (University of Toronto Press, 1974).

  65. The SWF theory is essentially the Green-Ampt model of soil physics: see for example Marshall T. J. and Holmes, J. W., ‘Soil Physics’, 2nd Edn (Cambridge, 1988); and Philip, J. R., ‘Theory of infiltration’,Adv. Hydrosci. 5 (1969) 215–296.

  66. Trimmer, D., ‘Laboratory measurements of ultralow permeability of geologic materials’,Rev. Sci. Instrum. 53 (1982) 1246–1254. The pressure decay method is recommended for materials withk′ in the range 10−17–10−22 m2.

    Article  Google Scholar 

  67. White, E. L., Scheetz, B. E., Roy, D. M., Zimmerman, K. G. & Grutzeck, M. W., ‘Permeability measurements on cementitious materials for nuclear waste isolation’, ‘Scientific Basis for Nuclear Waste Management’, edited by G. J. McCarthy (Plenum Press, New York, 1979) Vol. 1, pp. 471–478.

    Google Scholar 

  68. Wilson, M. A., ‘A study of water flow in porous construction materials’, Ph.D. thesis, University of Manchester, 1992.

  69. Wilson, M. A., Hoff, W. D. and Hall, C., ‘Water movement in porous building materials—X. Absorption from a small cylindrical cavity’,Building Environ. 26 (1991) 143–152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, C. Barrier performance of concrete: A review of fluid transport theory. Materials and Structures 27, 291–306 (1994). https://doi.org/10.1007/BF02473048

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02473048

Keywords

Navigation